These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 7093258)
1. Effects of energization on membrane organization in mycoplasma. Le Grimellec C; Lajeunesse D; Rigaud JL Biochim Biophys Acta; 1982 May; 687(2):281-90. PubMed ID: 7093258 [TBL] [Abstract][Full Text] [Related]
2. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity. Leblanc G; Le Grimellec C Biochim Biophys Acta; 1979 Jun; 554(1):168-79. PubMed ID: 36912 [TBL] [Abstract][Full Text] [Related]
3. The electrochemical proton gradient in Mycoplasma cells. Benyoucef M; Rigaud JL; Leblanc G Eur J Biochem; 1981 Jan; 113(3):491-8. PubMed ID: 6260481 [TBL] [Abstract][Full Text] [Related]
4. Energetics of gliding motility in Mycoplasma mobile. Jaffe JD; Miyata M; Berg HC J Bacteriol; 2004 Jul; 186(13):4254-61. PubMed ID: 15205428 [TBL] [Abstract][Full Text] [Related]
5. The electrochemical potential across mycoplasmal membranes. Schiefer HG; Schummer U Rev Infect Dis; 1982; 4 Suppl():S65-70. PubMed ID: 7123058 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis. van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885 [TBL] [Abstract][Full Text] [Related]
8. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle. Rouslin W J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098 [TBL] [Abstract][Full Text] [Related]
9. Role of Na+ cycle in cell volume regulation of Mycoplasma gallisepticum. Shirvan MH; Schuldiner S; Rottem S J Bacteriol; 1989 Aug; 171(8):4410-6. PubMed ID: 2753860 [TBL] [Abstract][Full Text] [Related]
10. An evaluation of N-phenyl-1-naphthylamine as a probe of membrane energy state in Escherichia coli. Cramer WA; Postma PW; Helgerson SL Biochim Biophys Acta; 1976 Dec; 449(3):401-11. PubMed ID: 793617 [TBL] [Abstract][Full Text] [Related]
11. Flow-force relationships in lettuce thylakoids. 2. Effect of the uncoupler FCCP on local proton resistances at the ATPase level. Sigalat C; de Kouchkovsky Y; Haraux F Biochemistry; 1993 Sep; 32(38):10201-8. PubMed ID: 8399147 [TBL] [Abstract][Full Text] [Related]
12. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles. Shiuan D; Weinstein SW Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593 [TBL] [Abstract][Full Text] [Related]
13. Proton motive force across the membrane of Mycoplasma gallisepticum and its possible role in cell volume regulation. Rottem S; Linker C; Wilson TH J Bacteriol; 1981 Mar; 145(3):1299-304. PubMed ID: 7204343 [TBL] [Abstract][Full Text] [Related]
14. DCCD-sensitive Na+-transport in the membrane vesicles of Halobacterium halobium. Murakami N; Konishi T J Biochem; 1988 Feb; 103(2):231-6. PubMed ID: 3372488 [TBL] [Abstract][Full Text] [Related]