These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7093271)

  • 1. Temperature-induced transitions of porcine intestinal brush border membranes.
    Ohyashiki T; Takeuchi M; Kodera M; Mohri T
    Biochim Biophys Acta; 1982 May; 688(1):16-22. PubMed ID: 7093271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of the molecular rigidity of the protein conformation in the intestinal brush-border membranes by lipid peroxidation.
    Ohyashiki T; Ohtsuka T; Mohri T
    Biochim Biophys Acta; 1988 Apr; 939(2):383-92. PubMed ID: 3355823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in SH reactivity of the protein in porcine intestinal brush-border membranes associated with lipid peroxidation.
    Ohyashiki T; Sakata N; Matsui K
    J Biochem; 1994 Feb; 115(2):224-9. PubMed ID: 8206871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A decrease of lipid fluidity of the porcine intestinal brush-border membranes by treatment with malondialdehyde.
    Ohyashiki T; Sakata N; Matsui K
    J Biochem; 1992 Mar; 111(3):419-23. PubMed ID: 1587807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on peroxidative damage of the porcine intestinal brush-border membranes using a fluorogenic thiol reagent, N-(1-pyrene)maleimide.
    Ohyashiki T; Sakata N; Kamata K; Matsui K
    Biochim Biophys Acta; 1991 Aug; 1067(2):159-65. PubMed ID: 1878370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of ionic strength on the protein conformation and the fluidity of porcine intestinal brush border membranes. Fluorometric studies using N-[7-dimethylamino-4-methylcoumarinyl]maleimide and pyrene.
    Ohyashiki T; Taka M; Mohri T
    J Biol Chem; 1985 Jun; 260(11):6857-61. PubMed ID: 3997850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature adaptation of biological membranes: differential homoeoviscous responses in brush-border and basolateral membranes of carp intestinal mucosa.
    Lee JA; Cossins AR
    Biochim Biophys Acta; 1990 Jul; 1026(2):195-203. PubMed ID: 2378886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the fluorescence parameters of bound N-(1-pyrene) maleimide by lipid peroxidation of intestinal brush-border membranes.
    Ohyashiki T; Yamamoto T; Mohri T
    Biochim Biophys Acta; 1989 Jun; 981(2):235-42. PubMed ID: 2730902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidity of brush border and basolateral membranes from human kidney cortex.
    Le Grimellec C; Carrière S; Cardinal J; Giocondi MC
    Am J Physiol; 1983 Aug; 245(2):F227-31. PubMed ID: 6309013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of interaction between Tb3+ and porcine intestinal brush-border membranes.
    Ohyashiki T; Ohtsuka T; Mohri T
    Biochim Biophys Acta; 1985 Jul; 817(1):181-6. PubMed ID: 4005254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-lipid interactions in human small intestinal brush-border membranes.
    Dudeja PK; Harig JM; Ramaswamy K; Brasitus TA
    Am J Physiol; 1989 Nov; 257(5 Pt 1):G809-17. PubMed ID: 2596611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of neuraminidase treatment on the lipid fluidity of the intestinal brush-border membranes.
    Ohyashiki T; Taka M; Mohri T
    Biochim Biophys Acta; 1987 Nov; 905(1):57-64. PubMed ID: 3676314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-phase structure in epithelial cell membranes: comparison of renal brush border and basolateral membranes.
    Illsley NP; Lin HY; Verkman AS
    Biochemistry; 1988 Mar; 27(6):2077-83. PubMed ID: 3378045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Premalignant alterations in the lipid composition and fluidity of colonic brush border membranes of rats administered 1,2 dimethylhydrazine.
    Brasitus TA; Dudeja PK; Dahiya R
    J Clin Invest; 1986 Mar; 77(3):831-40. PubMed ID: 3949981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney.
    Le Grimellec C; Giocondi MC; Carrière B; Carrière S; Cardinal J
    Am J Physiol; 1982 Mar; 242(3):F246-53. PubMed ID: 6278950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation and motion of spin-labels in rabbit small intestinal brush border vesicle membranes.
    Hauser H; Gains N; Semenza G; Spiess M
    Biochemistry; 1982 Oct; 21(22):5621-8. PubMed ID: 6293550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ionic strength on the membrane fluidity of rabbit intestinal brush-border membranes. A fluorescence probe study.
    Ohyashiki T; Mohri T
    Biochim Biophys Acta; 1983 Jun; 731(2):312-7. PubMed ID: 6849926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Order-disorder phase transition and lipid dynamics in rabbit small intestinal brush border membranes. Effect of proteins.
    Mütsch B; Gains N; Hauser H
    Biochemistry; 1983 Dec; 22(26):6326-33. PubMed ID: 6318815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-induced conformation changes of intestinal brush border membranes. Studies with fluorescence probes and sulfhydryl reagent.
    Ohyashiki T; Mohri T
    J Biochem; 1982 May; 91(5):1575-81. PubMed ID: 7096307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbations of rat intestinal brush border membranes induced by Ca2+ and vitamin D3 are detected using steady-state fluorescence polarization and alkaline phosphatase as membrane probes.
    Deliconstantinos G; Kopeikina-Tsiboukidou L; Tsakiris S
    Biochem Pharmacol; 1986 May; 35(10):1633-7. PubMed ID: 3011008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.