These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 7093457)
1. Physiological significance of blood rheology. Usami S Biorheology; 1982; 19(1/2):29-46. PubMed ID: 7093457 [TBL] [Abstract][Full Text] [Related]
2. Rheology in the microcirculation in normal and low flow states. Chien S Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948 [TBL] [Abstract][Full Text] [Related]
5. [Microrheology of blood in capillaries (author's transl)]. Gaehtgens P Arzneimittelforschung; 1981; 31(11a):1995-8. PubMed ID: 7199287 [TBL] [Abstract][Full Text] [Related]
6. Comparative rheology of the adhesion of platelets and leukocytes from flowing blood: why are platelets so small? Watts T; Barigou M; Nash GB Am J Physiol Heart Circ Physiol; 2013 Jun; 304(11):H1483-94. PubMed ID: 23585130 [TBL] [Abstract][Full Text] [Related]
7. [Macro- and micro-rheology of blood circulation]. Niimi H Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292 [No Abstract] [Full Text] [Related]
8. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W; Johnson PC; Gaehtgens P Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742 [TBL] [Abstract][Full Text] [Related]
9. [Human blood flow: dynamic fluidity or non-nucleated erythrocytes as cause for great fluidity of rapidly flowing blood]. Schmid-Schönbein H Verh Dtsch Ges Inn Med; 1981; 87():1274-89. PubMed ID: 7331417 [No Abstract] [Full Text] [Related]
11. Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. MERRILL EW; GILLILAND ER; COKELET G; SHIN H; BRITTEN A; WELLS RE Biophys J; 1963 May; 3(3):199-213. PubMed ID: 13935042 [TBL] [Abstract][Full Text] [Related]
12. Blood rheology in vitro and in vivo. Lowe GD Baillieres Clin Haematol; 1987 Sep; 1(3):597-636. PubMed ID: 3327559 [TBL] [Abstract][Full Text] [Related]
13. Blood viscosity and circulatory shock. Voerman HJ; Groeneveld AB Intensive Care Med; 1989; 15(2):72-8. PubMed ID: 2654241 [No Abstract] [Full Text] [Related]
14. The measurement of density and its significance in blood rheology. Chmiel H; Anadere I; Walitza E; Witte S Biorheology; 1983; 20(5):685-96. PubMed ID: 6677286 [TBL] [Abstract][Full Text] [Related]
15. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Sun C; Munn LL Biophys J; 2005 Mar; 88(3):1635-45. PubMed ID: 15613630 [TBL] [Abstract][Full Text] [Related]
16. Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation. Munn LL; Melder RJ; Jain RK Biophys J; 1996 Jul; 71(1):466-78. PubMed ID: 8804629 [TBL] [Abstract][Full Text] [Related]
17. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood. Quemada D Biorheology; 1981; 18(3-6):501-16. PubMed ID: 7326391 [No Abstract] [Full Text] [Related]
18. Alterations by leukocytes of erythrocyte flow in microchannels. La Celle PL Blood Cells; 1986; 12(1):179-89. PubMed ID: 3466657 [TBL] [Abstract][Full Text] [Related]
19. Mechanical behavior of the erythrocyte in microvessel stenosis. Zhang Z; Zhang X Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230 [TBL] [Abstract][Full Text] [Related]
20. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Alexy T; Pais E; Armstrong JK; Meiselman HJ; Johnson CS; Fisher TC Transfusion; 2006 Jun; 46(6):912-8. PubMed ID: 16734807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]