These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7093463)

  • 1. Determination of yield point: methods and review.
    Kiesewetter H; Radtke H; Jung F; Schmid-Schönbein H; Wortberg G
    Biorheology; 1982; 19(1/2):363-74. PubMed ID: 7093463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC; Hung TK; Bugliarello G
    Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345
    [No Abstract]   [Full Text] [Related]  

  • 4. Blood rheology near a stagnation point.
    Niimi H; Sugihara M
    Biorheology; 1982; 19(1/2):129-36. PubMed ID: 7093446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poiseuille flow of micropolar fluid with non-zero couple stress at boundary with applications to blood flow.
    Chaturani P; Mahajan SP
    Biorheology; 1982; 19(4):507-18. PubMed ID: 7126803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood rheology and physiology of microcirculation.
    Schmid-Schönbein H
    Ric Clin Lab; 1981; 11 Suppl 1():13-33. PubMed ID: 7188106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A measuring device to determine a universal parameter for the flow characteristics of blood: measurement of the yield shear stress in a branched capillary.
    Radtke H; Schneider R; Witt R; Kiesewetter H; Schmid-Schönbein H
    Adv Exp Med Biol; 1984; 169():851-7. PubMed ID: 6731131
    [No Abstract]   [Full Text] [Related]  

  • 8. Blood viscoelasticity and thixotropy from stress formation and relaxation measurements: a unified model.
    Quemada D; Droz R
    Biorheology; 1983; 20(5):635-51. PubMed ID: 6677283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yield shear stress of blood in branched models of the microcirculation. Effect of hematocrit and plasma macromolecules.
    Kiesewetter H; Radtke H; Schmid-Schönbein H
    Bibl Haematol; 1981; (47):14-20. PubMed ID: 7337655
    [No Abstract]   [Full Text] [Related]  

  • 10. Pathophysiological aspects of platelet aggregation in relation to blood flow rheology in microcirculation.
    Neri Serneri GG
    Ric Clin Lab; 1981; 11 Suppl 1():39-46. PubMed ID: 6765141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology.
    Gentile F; Ferrari M; Decuzzi P
    Ann Biomed Eng; 2008 Feb; 36(2):254-61. PubMed ID: 18172768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary blood viscosity in microcirculation.
    Cortinovis A; Crippa A; Cavalli R; Corti M; Cattaneo L
    Clin Hemorheol Microcirc; 2006; 35(1-2):183-92. PubMed ID: 16899925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of anomalous blood viscosity in confined shear flow.
    Thiébaud M; Shen Z; Harting J; Misbah C
    Phys Rev Lett; 2014 Jun; 112(23):238304. PubMed ID: 24972235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maxwell fluid behavior of blood at low shear rate.
    McMillan DE; Utterback N
    Biorheology; 1980; 17(4):343-54. PubMed ID: 7260346
    [No Abstract]   [Full Text] [Related]  

  • 15. [Microcirculation patterns and the rheological properties of the blood (a review of literature)].
    Rudaev IaA
    Probl Gematol Pereliv Krovi; 1974 Sep; 19(9):45-8. PubMed ID: 4617877
    [No Abstract]   [Full Text] [Related]  

  • 16. Fluid dynamics of a textured blood-contacting surface.
    Fujisawa N; Bertram CD; Woodard JC; Poole-Warren LA; Schindhelm K
    J Biomech Eng; 2001 Feb; 123(1):97-105. PubMed ID: 11277308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The fibrinolytic system. Relations between hemorrheology and microcirculation].
    Coccheri S; Palareti G; De Rosa V
    Ric Clin Lab; 1981; 11 Suppl 1():47-58. PubMed ID: 6231711
    [No Abstract]   [Full Text] [Related]  

  • 18. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation.
    Schmid-Schönbein H
    Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.
    Alonso C; Pries AR; Gaehtgens P
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.