These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7093796)

  • 1. Changes in the microvasculature of skin subjected to thermal injury.
    Nanney LB
    Burns Incl Therm Inj; 1982 May; 8(5):321-7. PubMed ID: 7093796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progression of thermal injury: a morphologic study.
    deCamara DL; Raine TJ; London MD; Robson MC; Heggers JP
    Plast Reconstr Surg; 1982 Mar; 69(3):491-9. PubMed ID: 7063572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Rho kinase and actin filament in the increased vascular permeability of skin venules in rats after scalding.
    Zheng HZ; Zhao KS; Zhou BY; Huang QB
    Burns; 2003 Dec; 29(8):820-7. PubMed ID: 14636758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sphingosine 1-phosphate on morphological and functional responses in endothelia and venules after scalding injury.
    Liu X; Wu W; Li Q; Huang X; Chen B; Du J; Zhao K; Huang Q
    Burns; 2009 Dec; 35(8):1171-9. PubMed ID: 19520517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural aspects of cooled thermal injury.
    de Camara DL; Raine T; Robson MC
    J Trauma; 1981 Nov; 21(11):911-9. PubMed ID: 7299859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of burn size to vascular permeability changes in rats.
    Carvajal HF; Linares HA; Brouhard BH
    Surg Gynecol Obstet; 1979 Aug; 149(2):193-202. PubMed ID: 462350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New model for in vivo investigation after microvascular breakdown in burns: use of intravital fluorescent microscopy.
    Langer S; Goertz O; Steinstraesser L; Kuhnen C; Steinau HU; Homann HH
    Burns; 2005 Mar; 31(2):168-74. PubMed ID: 15683687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the vascular response to burns with a new rat model.
    Regas FC; Ehrlich HP
    J Trauma; 1992 May; 32(5):557-63. PubMed ID: 1588642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of vascular response to thermal injury on hairless mice by fibre optic confocal imaging, laser doppler flowmetry and conventional histology.
    Vo LT; Papworth GD; Delaney PM; Barkla DH; King RG
    Burns; 1998 Jun; 24(4):319-24. PubMed ID: 9688196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dermal vascular patterns in response to burn or freeze injury in rats.
    Ehrlich HP; Trelstad RL; Fallon JT
    Exp Mol Pathol; 1981 Jun; 34(3):281-9. PubMed ID: 7238839
    [No Abstract]   [Full Text] [Related]  

  • 11. An electron-microscope study of the vascular response to mild thermal injury in the rat.
    Ham KN; Hurley JV
    J Pathol Bacteriol; 1968 Jan; 95(1):175-83. PubMed ID: 5647289
    [No Abstract]   [Full Text] [Related]  

  • 12. Endothelial proliferation in inflammation. I. Autoradiographic studies following thermal injury to the skin of normal rats.
    Sholley MM; Cavallo T; Cotran RS
    Am J Pathol; 1977 Nov; 89(2):277-96. PubMed ID: 920776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological parameters for assessment of burn severity in an acute burn injury rat model.
    Meyerholz DK; Piester TL; Sokolich JC; Zamba GK; Light TD
    Int J Exp Pathol; 2009 Feb; 90(1):26-33. PubMed ID: 19200248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nonpeptide NK1 receptor antagonist L-703,606 on the edema formation in rats at early stage after deep partial-thickness skin scalding.
    Tao K; Wang HT; Chen B; Wang BT; Li ZY; Zhu XX; Tang CW; Hu DH
    Asian Pac J Trop Med; 2013 May; 6(5):387-94. PubMed ID: 23608379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cooling after scald injury to a dorsal skin fold of mouse.
    Blomgren I; Bagge U; Johansson BR
    Scand J Plast Reconstr Surg; 1985; 19(1):1-9. PubMed ID: 3895404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The natural history of reversible burn injury.
    Zawacki BE
    Surg Gynecol Obstet; 1974 Dec; 139(6):867-72. PubMed ID: 4422280
    [No Abstract]   [Full Text] [Related]  

  • 17. Toll-like receptor 4 contributes to microvascular inflammation and barrier dysfunction in thermal injury.
    Breslin JW; Wu MH; Guo M; Reynoso R; Yuan SY
    Shock; 2008 Mar; 29(3):349-55. PubMed ID: 17704733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence-based injury prediction data for the water temperature and duration of exposure for clinically relevant deep dermal scald injuries.
    Andrews CJ; Kimble RM; Kempf M; Cuttle L
    Wound Repair Regen; 2017 Sep; 25(5):792-804. PubMed ID: 28857337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. U75412E, a lazaroid, prevents progressive burn ischemia in a rat burn model.
    Choi M; Ehrlich HP
    Am J Pathol; 1993 Feb; 142(2):519-28. PubMed ID: 8434647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effect of scalding injury on blood flow in muscle and subcutaneous tissue in the paw of the anaesthetized dog.
    Hamar J; Jonsson CE; Kovách AG
    Scand J Plast Reconstr Surg; 1979; 13(1):39-43. PubMed ID: 451476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.