These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7094007)

  • 1. Transport of horseradish peroxidase by processes of radial glia from the pial surface into the mouse brain.
    Hajós F; Feminger A; Bascó E; Mezey E
    Cell Tissue Res; 1982; 224(1):189-94. PubMed ID: 7094007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.
    Levitt P; Rakic P
    J Comp Neurol; 1980 Oct; 193(3):815-40. PubMed ID: 7002963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stem cell marker expression in the Bergmann glia population of the adult mouse brain.
    Sottile V; Li M; Scotting PJ
    Brain Res; 2006 Jul; 1099(1):8-17. PubMed ID: 16797497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker.
    Edwards MA; Yamamoto M; Caviness VS
    Neuroscience; 1990; 36(1):121-44. PubMed ID: 2215915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocytic activity of subependymal microglial cells in the toad brain: a cytochemical study of peroxidase uptake.
    McKenna OC
    J Comp Neurol; 1979 Sep; 187(1):169-89. PubMed ID: 114551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific uptake of intracranial horseradish peroxidase (HRP) by microglial cells in the goldfish.
    Moorhouse L; Pederson K; Levine RL
    Neurosci Lett; 1996 Apr; 208(1):13-6. PubMed ID: 8731163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcellular retrograde labeling of radial glial cells with WGA-HRP and DiI in neonatal rat and hamster.
    Kageyama GH; Robertson RT
    Glia; 1993 Sep; 9(1):70-81. PubMed ID: 7503953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies.
    Yanes C; Monzon-Mayor M; Ghandour MS; de Barry J; Gombos G
    J Comp Neurol; 1990 May; 295(4):559-68. PubMed ID: 2358521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and distribution of JNK/SAPK-associated scaffold protein JSAP1 in developing and adult mouse brain.
    Miura E; Fukaya M; Sato T; Sugihara K; Asano M; Yoshioka K; Watanabe M
    J Neurochem; 2006 Jun; 97(5):1431-46. PubMed ID: 16606357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry.
    Mayberg MR; Zervas NT; Moskowitz MA
    J Comp Neurol; 1984 Feb; 223(1):46-56. PubMed ID: 6200513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum.
    Leung AW; Li JYH
    Cerebellum; 2018 Feb; 17(1):42-48. PubMed ID: 29218544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of horseradish peroxidase from CSF into the choroid plexus of the rat, with special reference to transepithelial transport.
    van Deurs B; Møller M; Amtorp O
    Cell Tissue Res; 1978 Feb; 187(2):215-34. PubMed ID: 630593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, intra-axonal transport and fate of horseradish peroxidase in embryonic spinal neurons of the chick.
    Chu-Wang IW; Oppenheim RW
    J Comp Neurol; 1980 Oct; 193(3):753-76. PubMed ID: 6160167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electron microscopic study on the blood-optic nerve and fluid-optic nerve barrier.
    Tsukahara I; Yamashita H
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1975 Sep; 196(3):239-46. PubMed ID: 1082256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease.
    Hu H; Yang Y; Eade A; Xiong Y; Qi Y
    J Comp Neurol; 2007 May; 502(2):168-83. PubMed ID: 17479518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: pharmacokinetic and morphological assessments.
    Banks WA; Broadwell RD
    J Neurochem; 1994 Jun; 62(6):2404-19. PubMed ID: 7514652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartments in the organum vasculosum laminae terminalis of the rat and their delineation against the outer cerebrospinal fluid-containing space.
    Krisch B; Leonhardt H; Oksche A
    Cell Tissue Res; 1987 Nov; 250(2):331-47. PubMed ID: 2448035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices.
    Barros LF; Courjaret R; Jakoby P; Loaiza A; Lohr C; Deitmer JW
    Glia; 2009 Jul; 57(9):962-70. PubMed ID: 19062182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease.
    Hu H; Yang Y; Eade A; Xiong Y; Qi Y
    J Comp Neurol; 2007 Mar; 501(1):168-83. PubMed ID: 17206611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.