These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 7095044)

  • 1. Retinotopic organization of extra-retinal saccade-related input to the visual cortex in the cat.
    Vanni-Mercier G; Magnin M
    Exp Brain Res; 1982; 46(3):368-76. PubMed ID: 7095044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second and third visual areas of the cat: interindividual variability in retinotopic arrangement and cortical location.
    Albus K; Beckmann R
    J Physiol; 1980 Feb; 299():247-76. PubMed ID: 7381768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of retinal and motor signals of eye movements in striate cortex cells of the alert cat.
    Toyama K; Komatsu Y; Shibuki K
    J Neurophysiol; 1984 Apr; 51(4):649-65. PubMed ID: 6716117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retinotopic organization of area 17 (striate cortex) in the cat.
    Tusa RJ; Palmer LA; Rosenquist AC
    J Comp Neurol; 1978 Jan; 177(2):213-35. PubMed ID: 413845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex.
    Rosa MG; Schmid LM; Calford MB
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):589-608. PubMed ID: 7738850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli.
    Evinger C; Kaneko CR; Fuchs AF
    J Neurophysiol; 1982 May; 47(5):827-44. PubMed ID: 7086471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements.
    Marple-Horvat DE; Criado JM; Armstrong DM
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):489-514. PubMed ID: 9490874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visuomotor interactions in responses of neurons in the middle and lateral suprasylvian cortices of the behaving cat.
    Yin TC; Greenwood M
    Exp Brain Res; 1992; 88(1):15-32. PubMed ID: 1541350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex.
    Sherk H; Mulligan KA
    Vis Neurosci; 1993; 10(1):131-58. PubMed ID: 7678750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional organization in the visual cortex of the golden hamster.
    Tiao YC; Blakemore C
    J Comp Neurol; 1976 Aug; 168(4):459-81. PubMed ID: 939818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotopic organization of areas 20 and 21 in the cat.
    Tusa RJ; Palmer LA
    J Comp Neurol; 1980 Sep; 193(1):147-64. PubMed ID: 7430426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements.
    Krock RM; Moore T
    J Neurophysiol; 2016 Dec; 116(6):2882-2891. PubMed ID: 27683894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel processing of binocular disparity in the cat's retinogeniculocortical pathways.
    Pettigrew JD; Dreher B
    Proc R Soc Lond B Biol Sci; 1987 Dec; 232(1268):297-321. PubMed ID: 2894035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy.
    Najafian S; Jin J; Alonso JM
    J Neurosci; 2019 Nov; 39(46):9145-9163. PubMed ID: 31558616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single neuron activity related to natural vestibular stimulation in the cat's visual cortex.
    Vanni-Mercier G; Magnin M
    Exp Brain Res; 1982; 45(3):451-5. PubMed ID: 7067779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccadic eye movements evoked by electrical stimulation of the cat's visual cortex.
    McIlwain JT
    Vis Neurosci; 1988; 1(1):135-43. PubMed ID: 3154785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.