These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7095256)

  • 41. Inhibition of DNA polymerases of sea urchin by palmitoyl coenzyme A.
    Shimada H; Haraguchi T; Nagano H; Fujiwara A; Yasumasu I
    Biochem Biophys Res Commun; 1983 Feb; 110(3):902-7. PubMed ID: 6838558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning of a sea urchin sarco/endoplasmic reticulum Ca2+ ATPase.
    Gunaratne HJ; Vacquier VD
    Biochem Biophys Res Commun; 2006 Jan; 339(1):443-9. PubMed ID: 16297861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Localization and characterization of blastocoelic extracellular matrix antigens in early sea urchin embryos and evidence for their proteolytic modification during gastrulation.
    Vafa O; Goetzl L; Poccia D; Nishioka D
    Differentiation; 1996 Jun; 60(3):129-38. PubMed ID: 8766593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gastrulation in the sea urchin Strongylocentrotus purpuratus is blocked by the fluorescein dye erythrosin B.
    Carroll EJ
    Mol Reprod Dev; 1990 Jan; 25(1):67-71. PubMed ID: 2168189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular characterization of a novel cell surface ADP-ribosyl cyclase from the sea urchin.
    Churamani D; Boulware MJ; Ramakrishnan L; Geach TJ; Martin AC; Vacquier VD; Marchant JS; Dale L; Patel S
    Cell Signal; 2008 Dec; 20(12):2347-55. PubMed ID: 18824228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase.
    Liang J; Aleksanyan H; Metzenberg S; Oppenheimer SB
    Zygote; 2016 Jun; 24(3):371-7. PubMed ID: 26168775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stimulation of sea urchin DNA polymerase by protein factors.
    Murakami K; Mano Y
    Biochem Biophys Res Commun; 1973 Dec; 55(4):1125-33. PubMed ID: 4589303
    [No Abstract]   [Full Text] [Related]  

  • 48. Developmental regulation of glycosyltransferases involved in synthesis of N-linked glycoproteins in sea urchin embryos.
    Welply JK; Lau JT; Lennarz WJ
    Dev Biol; 1985 Jan; 107(1):252-8. PubMed ID: 3965324
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene expression and enzyme activities of the sodium pump during sea urchin development: implications for indices of physiological state.
    Marsh AG; LeongPKK ; Manahan T
    Biol Bull; 2000 Oct; 199(2):100-7. PubMed ID: 11081708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cortical localization of a calcium release channel in sea urchin eggs.
    McPherson SM; McPherson PS; Mathews L; Campbell KP; Longo FJ
    J Cell Biol; 1992 Mar; 116(5):1111-21. PubMed ID: 1310992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polysaccharides sulfated at the time of gastrulation in embryos of the sea urchin Clypeaster japonicus.
    Yamaguchi M; Kinoshita S
    Exp Cell Res; 1985 Aug; 159(2):353-65. PubMed ID: 4029273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of PLCgamma-dependent and -independent events during fertilization of sea urchin eggs.
    Carroll DJ; Albay DT; Terasaki M; Jaffe LA; Foltz KR
    Dev Biol; 1999 Feb; 206(2):232-47. PubMed ID: 9986735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for a secretory pathway Ca2+-ATPase in sea urchin spermatozoa.
    Gunaratne HJ; Vacquier VD
    FEBS Lett; 2006 Jul; 580(16):3900-4. PubMed ID: 16797550
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ribonucleotidyl transferase in preparations of partially purified DNA polymerase alpha of the sea urchin.
    Morris PW; Racine FM
    Nucleic Acids Res; 1978 Oct; 5(10):3959-73. PubMed ID: 724505
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sea urchin deciliation induces thermoresistance and activates the p38 mitogen-activated protein kinase pathway.
    Casano C; Roccheri MC; Maenza L; Migliore S; Gianguzza F
    Cell Stress Chaperones; 2003; 8(1):70-5. PubMed ID: 12820656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ca 2+ -activated APTase during the cell cycle of the sea urchin Strongylocentrotus purpuratus.
    Petzelt C
    Exp Cell Res; 1972 Feb; 70(2):333-9. PubMed ID: 4258132
    [No Abstract]   [Full Text] [Related]  

  • 58. Using molecular prey detection to quantify rock lobster predation on barrens-forming sea urchins.
    Redd KS; Ling SD; Frusher SD; Jarman S; Johnson CR
    Mol Ecol; 2014 Aug; 23(15):3849-69. PubMed ID: 24844936
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein tyrosine kinase activity following fertilization is required to complete gastrulation, but not for initial differentiation of endoderm and mesoderm in the sea urchin embryo.
    Livingston BT; VanWinkle CE; Kinsey WH
    Dev Biol; 1998 Jan; 193(1):90-9. PubMed ID: 9466890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of sea urchin glycoprotein mRNAs during embryonic development.
    Lau JT; Lennarz WJ
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1028-32. PubMed ID: 6573654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.