BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7096142)

  • 21. Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis.
    Hirche HJ; Hombach V; Langohr HD; Wacker U; Busse J
    Pflugers Arch; 1975; 356(3):209-22. PubMed ID: 239385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lactate acidosis and the increase in VE/VO2 during incremental exercise.
    Farrell SW; Ivy JL
    J Appl Physiol (1985); 1987 Apr; 62(4):1551-5. PubMed ID: 3597224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia.
    Taylor AD; Bronks R; Bryant AL
    Electromyogr Clin Neurophysiol; 1997 Oct; 37(7):387-98. PubMed ID: 9402427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between muscle fatigue and oxygen uptake during cycle ergometer exercise with different ramp slope increments.
    Takaishi T; Ono T; Yasuda Y
    Eur J Appl Physiol Occup Physiol; 1992; 65(4):335-9. PubMed ID: 1425634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of induced alkalosis and acidosis on endurance running at an intensity corresponding to 4 mM blood lactate.
    George KP; MacLaren DP
    Ergonomics; 1988 Nov; 31(11):1639-45. PubMed ID: 3229410
    [No Abstract]   [Full Text] [Related]  

  • 27. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximal work production following two levels of artificially induced metabolic alkalosis.
    McKenzie DC; Coutts KD; Stirling DR; Hoeben HH; Kuzara G
    J Sports Sci; 1986; 4(1):35-8. PubMed ID: 3735482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints.
    Matsuura R; Arimitsu T; Kimura T; Yunoki T; Yano T
    Eur J Appl Physiol; 2007 Nov; 101(4):409-17. PubMed ID: 17628824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic work and power output during cycle ergometer exercise: effects of bicarbonate loading.
    McNaughton L; Curtin R; Goodman G; Perry D; Turner B; Showell C
    J Sports Sci; 1991; 9(2):151-60. PubMed ID: 1910096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship among oxygenation, myoelectric activity, and lactic acid accumulation in vastus lateralis muscle during exercise with constant work rate.
    Miura H; Araki H; Matoba H; Kitagawa K
    Int J Sports Med; 2000 Apr; 21(3):180-4. PubMed ID: 10834349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preexercise metabolic alkalosis induced via bicarbonate ingestion accelerates Vo2 kinetics at the onset of a high-power-output exercise in humans.
    Zoladz JA; Szkutnik Z; Duda K; Majerczak J; Korzeniewski B
    J Appl Physiol (1985); 2005 Mar; 98(3):895-904. PubMed ID: 15516367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NaHCO3-induced alkalosis reduces the phosphocreatine slow component during heavy-intensity forearm exercise.
    Forbes SC; Raymer GH; Kowalchuk JM; Marsh GD
    J Appl Physiol (1985); 2005 Nov; 99(5):1668-75. PubMed ID: 16002768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of bicarbonate ingestion on the respiratory compensation threshold and maximal exercise performance.
    Iwaoka K; Okagawa S; Mutoh Y; Miyashita M
    Jpn J Physiol; 1989; 39(2):255-65. PubMed ID: 2761122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass.
    Kayser B; Narici M; Binzoni T; Grassi B; Cerretelli P
    J Appl Physiol (1985); 1994 Feb; 76(2):634-40. PubMed ID: 8175572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of alkalosis on maximum oxygen uptake in rats acclimated to simulated altitude.
    Gonzalez NC; Zamagni M; Clancy RL
    J Appl Physiol (1985); 1991 Sep; 71(3):1050-6. PubMed ID: 1757300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid-base regulation during exercise and recovery in humans.
    Stringer W; Casaburi R; Wasserman K
    J Appl Physiol (1985); 1992 Mar; 72(3):954-61. PubMed ID: 1568991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer.
    Petrofsky JS
    Eur J Appl Physiol Occup Physiol; 1979 Apr; 41(1):1-15. PubMed ID: 446467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise and recovery ventilatory and VO2 responses of patients with McArdle's disease.
    Hagberg JM; King DS; Rogers MA; Montain SJ; Jilka SM; Kohrt WM; Heller SL
    J Appl Physiol (1985); 1990 Apr; 68(4):1393-8. PubMed ID: 2347781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed appearance of blood lactate with reduced frequency breathing during exercise.
    Yamamoto Y; Takei Y; Mutoh Y; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1988; 57(4):462-6. PubMed ID: 3135187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.