These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7096264)
1. Altered methionyl-tRNA synthetase in a Spirulina platensis mutant resistant to ethionine. Riccardi G; Sanangelantoni AM; Sarasini A; Ciferri O J Bacteriol; 1982 Aug; 151(2):1053-5. PubMed ID: 7096264 [TBL] [Abstract][Full Text] [Related]
2. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium. Archibold ER; Williams LS J Bacteriol; 1973 Jun; 114(3):1007-13. PubMed ID: 4576394 [TBL] [Abstract][Full Text] [Related]
3. The recognition of methionine analogues by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem Soc Trans; 1975; 3(5):659-60. PubMed ID: 1104390 [No Abstract] [Full Text] [Related]
4. A new method for the isolation of methionyl transfer RNA synthetase mutants from Escherichia coli. Armstrong JB; Fairfield JA Can J Microbiol; 1975 Jun; 21(6):754-8. PubMed ID: 1097064 [TBL] [Abstract][Full Text] [Related]
5. rel-dependent methionine requirement in revertants of a methionyl-transfer RNA synthetase mutant of Escherichia coli. Somerville CR; Ahmed A J Mol Biol; 1977 Mar; 111(1):77-81. PubMed ID: 323499 [No Abstract] [Full Text] [Related]
7. 31P NMR of the reversible methionine activation reaction catalyzed by methionyl-tRNA synthetase of Escherichia coli. Equilibrium, interconversion rates, and NMR parameters of the enzyme-bound species. Fayat G; Blanquet S; Nageswara Rao BD; Cohn M J Biol Chem; 1980 Sep; 255(17):8164-9. PubMed ID: 6997291 [No Abstract] [Full Text] [Related]
8. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues. Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903 [TBL] [Abstract][Full Text] [Related]
9. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli. Jacques Y; Blanquet S Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359 [TBL] [Abstract][Full Text] [Related]
10. Expression of the aminoacyl-tRNA synthetase complex in cultured Chinese hamster ovary cells. Specific depression of the methionyl-tRNA synthetase component upon methionine restriction. Lazard M; Mirande M; Waller JP J Biol Chem; 1987 Mar; 262(9):3982-7. PubMed ID: 3644822 [TBL] [Abstract][Full Text] [Related]
11. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037 [TBL] [Abstract][Full Text] [Related]
12. Constitutive behavior of methionyl-tRNA synthetase compared to repressible behavior of methionine adenosyltransferase in mammalian cells. Rubnitz JE; Jacobsen SJ; Hoffman RM Biochim Biophys Acta; 1981 Oct; 677(2):269-73. PubMed ID: 7197557 [TBL] [Abstract][Full Text] [Related]
13. Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases from an extreme thermophile Thermus thermophilus HB8: protein structure and Zn2+ binding. Kohda D; Yokoyama S; Miyazawa T FEBS Lett; 1984 Aug; 174(1):20-3. PubMed ID: 6468656 [TBL] [Abstract][Full Text] [Related]
14. The amino acid activation reaction catalyzed by methionyl-transfer rna synthetase: evidence for synergistic coupling between the sites for methionine adenosine and pyrophosphate. Blanquet S; Fayat G; Waller JP J Mol Biol; 1975 May; 94(1):1-15. PubMed ID: 167177 [No Abstract] [Full Text] [Related]
15. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli. Fayat G; Fromant M; Blanquet S Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563 [No Abstract] [Full Text] [Related]
16. Antico-operative binding of bacterial and mammalian initiator tRNAMet to methionyl-tRNA synthetase from escherichia coli. Blanquet S; Dessen P J Mol Biol; 1976 Jun; 103(4):765-84. PubMed ID: 781286 [No Abstract] [Full Text] [Related]
17. Competition of ethionine and methionine for aminoacyl-tRNA formation in an in vitro system from Ochromonas danica. Ziv E; Hochberg A; Degroot N; Rahat M J Protozool; 1973 Feb; 20(1):153-6. PubMed ID: 4690647 [No Abstract] [Full Text] [Related]
18. An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis. Fersht AR; Dingwall C Biochemistry; 1979 Apr; 18(7):1250-6. PubMed ID: 427110 [No Abstract] [Full Text] [Related]
19. Chloroplastic methionyl-tRNA synthetase from wheat. Carias JR; Mouricout M; Julien R Biochem Biophys Res Commun; 1981 Feb; 98(3):735-42. PubMed ID: 6164366 [No Abstract] [Full Text] [Related]
20. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae. Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]