These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7096329)

  • 1. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport.
    Lever JE
    J Biol Chem; 1982 Aug; 257(15):8680-86. PubMed ID: 7096329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line.
    Moran A; Handler JS; Turner RJ
    Am J Physiol; 1982 Nov; 243(5):C293-8. PubMed ID: 7137338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1).
    Rabito CA
    Biochim Biophys Acta; 1981 Dec; 649(2):286-96. PubMed ID: 7198488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar transport in the LLC-PK1 renal epithelial cell line: similarity to mammalian kidney and the influence of cell density.
    Mullin JM; Weibel J; Diamond L; Kleinzeller A
    J Cell Physiol; 1980 Sep; 104(3):375-89. PubMed ID: 7419610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium cotransport processes in renal epithelial cell lines.
    Rabito CA
    Miner Electrolyte Metab; 1986; 12(1):32-41. PubMed ID: 2421146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme activities and sodium-dependent active D-glucose transport in apical membrane vesicles isolated from kidney epithelial cell line (LLC-PK1).
    Inui K; Saito H; Takano M; Okano T; Kitazawa S; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):514-8. PubMed ID: 6696898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ouabain and ortho vanadate on transport-related properties of the LLC-PK1 renal epithelial cell line.
    Mullin JM; Diamond L; Kleinzeller A
    J Cell Physiol; 1980 Oct; 105(1):1-6. PubMed ID: 7430261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid transport in kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers.
    Lever JE; Kennedy BG; Vasan R
    Arch Biochem Biophys; 1984 Nov; 234(2):330-40. PubMed ID: 6093696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Na+-dependent hexose transport in a cultured line of porcine kidney cells.
    Amsler K; Cook JS
    Am J Physiol; 1982 Jan; 242(1):C94-101. PubMed ID: 6277200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal-lateral transport and transcellular flux of methyl alpha-D-glucoside across LLC-PK1 renal epithelial cells.
    Mullin JM; Fluk L; Kleinzeller A
    Biochim Biophys Acta; 1986 Mar; 885(3):233-9. PubMed ID: 3081050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes.
    Aronson PS; Sacktor B
    J Biol Chem; 1975 Aug; 250(15):6032-9. PubMed ID: 1150669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C; Bennett E; Randles J; Kimmich GA
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ontogeny of sugar transport in kidney.
    Roth KS; Hwang SM; Yudkoff M; Segal S
    Pediatr Res; 1978 Dec; 12(12):1127-31. PubMed ID: 745866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+.
    Kimmich GA; Randles J
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C486-94. PubMed ID: 3177623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine.
    Restrepo D; Kimmich GA
    J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two sodium ion/D-glucose symport mechanism: membrane potential effects on phlorizin binding.
    Lever JE
    Biochemistry; 1984 Sep; 23(20):4697-702. PubMed ID: 6541946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.