These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7096329)

  • 21. Sodium-dependent glucose transport by cultured proximal tubule cells.
    Alavi N; Spangler RA; Jung CY
    Biochim Biophys Acta; 1987 May; 899(1):9-16. PubMed ID: 3567195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the Na(+)-dependent hexose carrier in LLC-PK1 cells is dependent on microtubules.
    Van Den Bosch L; De Smedt H; Borghgraef R
    Biochim Biophys Acta; 1990 Dec; 1030(2):223-30. PubMed ID: 1979753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of azaserine upon the proline and methyl alpha-D-glucoside transport systems of rat renal brush-border membranes.
    Hsu BY; Marshall CM; Corcoran SM; Segal S
    Biochim Biophys Acta; 1982 Oct; 692(1):41-51. PubMed ID: 7171588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na+-independent sugar transport by cultured renal (LLC-PK1) epithelial cells.
    Mullin JM; McGinn MT; Snock KV; Kofeldt LM
    Am J Physiol; 1989 Jul; 257(1 Pt 2):F11-7. PubMed ID: 2750915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous reversal of polarity of the voltage across LLC-PK1 renal epithelial cell sheets.
    Mullin JM; O'Brien TG
    J Cell Physiol; 1987 Dec; 133(3):515-22. PubMed ID: 3693411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initiation and characterization of primary mouse kidney epithelial cultures.
    Bell CL; Tenenhouse HS; Scriver CR
    In Vitro Cell Dev Biol; 1988 Jul; 24(7):683-95. PubMed ID: 2840432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells.
    Kimmich GA; Randles J
    Membr Biochem; 1978; 1(3-4):221-37. PubMed ID: 756489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Otogeny of sugar transport in fetal rat kidney.
    LeLièvre-Pégorier M; Geloso JP
    Biol Neonate; 1980; 38(1-2):16-24. PubMed ID: 7388086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells.
    Carter-Su C; Kimmich GA
    Am J Physiol; 1980 Mar; 238(3):C73-80. PubMed ID: 7369349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK1).
    Brown CD; Bodmer M; Biber J; Murer H
    Biochim Biophys Acta; 1984 Jan; 769(2):471-8. PubMed ID: 6696895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of expression of the sodium-coupled hexose transporter in cultured LLC-PK1 epithelia.
    Handler JS; Moran A
    Pflugers Arch; 1985; 405 Suppl 1():S163-6. PubMed ID: 4088833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transepithelial transport in cell culture: stoichiometry of Na/phlorizin binding and Na/D-glucose cotransport. A two-step, two sodium model of binding and translocation.
    Misfeldt DS; Sanders MJ
    J Membr Biol; 1982; 70(3):191-8. PubMed ID: 7186940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Na+-dependent sugar transport in intestinal epithelial cells by exogenous ATP.
    Kimmich G; Randles J
    Am J Physiol; 1980 May; 238(5):C177-83. PubMed ID: 7377337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium-dependent co-transported analogues of glucose stimulate ornithine decarboxylase mRNA expression in LLC-PK1 cells.
    Benis RC; Lundgren DW
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):751-6. PubMed ID: 8435072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renal sugar transport in the winter flounder. IV. Effect of Ca2+ on sugar transport in teased renal tubules.
    Kleinzeller A; Dubyak GR
    J Cell Physiol; 1977 Oct; 93(1):11-6. PubMed ID: 908736
    [No Abstract]   [Full Text] [Related]  

  • 39. Vanadate reduces sodium-dependent glucose transport and increases glycolytic activity in LLC-PK1 epithelia.
    Madsen KL; Porter VM; Fedorak RN
    J Cell Physiol; 1994 Mar; 158(3):459-66. PubMed ID: 8126069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1).
    Haggerty JG; Agarwal N; Reilly RF; Adelberg EA; Slayman CW
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6797-801. PubMed ID: 2901105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.