These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 7096385)
1. An axisymmetric model of acetabular components in total hip arthroplasty. Pedersen DR; Crowninshield RD; Brand RA; Johnston RC J Biomech; 1982; 15(4):305-15. PubMed ID: 7096385 [TBL] [Abstract][Full Text] [Related]
2. A stress analysis of acetabular reconstruction in protrusio acetabuli. Crowninshield RD; Brand RA; Pedersen DR J Bone Joint Surg Am; 1983 Apr; 65(4):495-9. PubMed ID: 6833325 [TBL] [Abstract][Full Text] [Related]
3. Advances in total hip arthroplasty. The metal-backed acetabular component. Harris WH Clin Orthop Relat Res; 1984 Mar; (183):4-11. PubMed ID: 6697600 [TBL] [Abstract][Full Text] [Related]
4. Shape optimization of metal backing for cemented acetabular cup. Hedia HS; Abdel-Shafi AA; Fouda N Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841 [TBL] [Abstract][Full Text] [Related]
5. Periacetabular stress distributions after joint replacement with subchondral bone retention. Carter DR; Vasu R; Harris WH Acta Orthop Scand; 1983 Feb; 54(1):29-35. PubMed ID: 6829279 [TBL] [Abstract][Full Text] [Related]
6. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty]. Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572 [TBL] [Abstract][Full Text] [Related]
7. Stress distributions in the acetabular region--II. Effects of cement thickness and metal backing of the total hip acetabular component. Carter DR; Vasu R; Harris WH J Biomech; 1982; 15(3):165-70. PubMed ID: 7096369 [TBL] [Abstract][Full Text] [Related]
8. Pelvic stresses in vitro--II. A study of the efficacy of metal-backed acetabular prostheses. Finlay JB; Bourne RB; Landsberg RP; Andreae P J Biomech; 1986; 19(9):715-25. PubMed ID: 3793746 [TBL] [Abstract][Full Text] [Related]
9. The effect of cement mantle thickness on strain energy density distribution and prediction of bone density changes around cemented acetabular component. Sanjay D; Mondal S; Bhutani R; Ghosh R Proc Inst Mech Eng H; 2018 Sep; 232(9):912-921. PubMed ID: 30105942 [TBL] [Abstract][Full Text] [Related]
10. Finite element study of the acetabulum in cemented hip arthroplasty investigating retention or removal of the subchondral bone plate. Tanner KE; Svensson I; Samuelsson F; Flivik G Biomed Tech (Berl); 2016 Oct; 61(5):525-536. PubMed ID: 26630687 [TBL] [Abstract][Full Text] [Related]
11. Effect of Bone Coverage on Acetabular Implant Stresses in Standard and Dual-Mobility Total Hip Arthroplasty Constructs: A Finite Element Model. Smuin DM; Tucker SM; Rothermel SD; Lewis GS; Mason M Orthopedics; 2021; 44(5):280-284. PubMed ID: 34590939 [TBL] [Abstract][Full Text] [Related]
12. The influence of acetabular bone cracks in the press-fit hip replacement: Numerical and experimental analysis. Ramos A; Duarte RJ; Relvas C; Completo A; Simões JA Clin Biomech (Bristol); 2013 Jul; 28(6):635-41. PubMed ID: 23810509 [TBL] [Abstract][Full Text] [Related]
13. Total hip reconstruction in acetabular dysplasia. A finite element study. Schüller HM; Dalstra M; Huiskes R; Marti RK J Bone Joint Surg Br; 1993 May; 75(3):468-74. PubMed ID: 8496225 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of bone cement failure criteria with applications to the acetabular region. Vasu R; Carter DR; Harris WH J Biomech Eng; 1983 Nov; 105(4):332-7. PubMed ID: 6645441 [TBL] [Abstract][Full Text] [Related]
15. The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups--finite element simulations and experimental tests. Korhonen RK; Koistinen A; Konttinen YT; Santavirta SS; Lappalainen R Biomed Eng Online; 2005 May; 4():32. PubMed ID: 15904521 [TBL] [Abstract][Full Text] [Related]
16. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis. Goebel P; Kluess D; Wieding J; Souffrant R; Heyer H; Sander M; Bader R J Orthop Sci; 2013 Mar; 18(2):264-70. PubMed ID: 23377753 [TBL] [Abstract][Full Text] [Related]
17. Analysis of contact mechanics in McKee-farrar metal-on-metal hip implants. Yew A; Jagatia M; Ensaff H; Jin ZM Proc Inst Mech Eng H; 2003; 217(5):333-40. PubMed ID: 14558645 [TBL] [Abstract][Full Text] [Related]
18. Metal-backed acetabular components with conventional polyethylene: a review of 9113 primary components with a follow-up of 20 years. Hallan G; Dybvik E; Furnes O; Havelin LI J Bone Joint Surg Br; 2010 Feb; 92(2):196-201. PubMed ID: 20130308 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of the Basic Stress Pathway Above Acetabular Dome]. Nie Y; Ma J; Haung Q; Hu Q; Shi X; Pei F Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Aug; 32(4):802-7. PubMed ID: 26710451 [TBL] [Abstract][Full Text] [Related]
20. [Three-dimensional finite element analysis of acetabular prosthesis in an adult patient with total flip arthroplasty for high dislocation]. Cheng XW; Lan PW; Shen B; Liu Z; Zhang YL; Yang J; Zhou ZK; Kang PD; Pei F Sichuan Da Xue Xue Bao Yi Xue Ban; 2013 Sep; 44(5):787-91. PubMed ID: 24325113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]