These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7096385)

  • 21. Relation between vertical orientation and stability of acetabular component in the dysplastic hip simulated by nonlinear three-dimensional finite element method.
    Oki H; Ando M; Omori H; Okumura Y; Negoro K; Uchida K; Baba H
    Artif Organs; 2004 Nov; 28(11):1050-4. PubMed ID: 15504121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element analysis of acetabular reconstruction. Noncemented threaded cups.
    Huiskes R
    Acta Orthop Scand; 1987 Dec; 58(6):620-5. PubMed ID: 3442206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Thickness of the Medial Wall of the Acetabulum Prevents Acetabular Fracture during the Insertion of a Cementless Cup in Total Hip Arthroplasty: A Biomechanical Study.
    Sanki T; Tetsunaga T; Furumatsu T; Yamada K; Kawamura Y; Ozaki T
    Acta Med Okayama; 2021 Feb; 75(1):71-77. PubMed ID: 33649616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cement interface and bone stress in total hip arthroplasty: Relationship to head size.
    Alonso-Rasgado T; Del-Valle-Mojica JF; Jimenez-Cruz D; Bailey CG; Board TN
    J Orthop Res; 2018 Nov; 36(11):2966-2977. PubMed ID: 29774956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement.
    Bartel DL; Bicknell VL; Wright TM
    J Bone Joint Surg Am; 1986 Sep; 68(7):1041-51. PubMed ID: 3745241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alterations in femoral and acetabular bone strains immediately following cementless total hip arthroplasty: an in vitro canine study.
    Page A; Jasty M; Bragdon C; Ito K; Harris WH
    J Orthop Res; 1991 Sep; 9(5):738-48. PubMed ID: 1870038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of the pelvic bone on the computational results of the acetabular component of a total hip prosthesis.
    Barreto S; Folgado J; Fernandes PR; Monteiro J
    J Biomech Eng; 2010 May; 132(5):054503. PubMed ID: 20459214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symposium on Surface Replacement Arthroplasty of the Hip. Biomechanics: mutifactorial design choices--an essential compromise?
    Clarke IC
    Orthop Clin North Am; 1982 Oct; 13(4):681-707. PubMed ID: 7145341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational assessment of the effect of polyethylene wear rate, mantle thickness, and porosity on the mechanical failure of the acetabular cement mantle.
    Coultrup OJ; Hunt C; Wroblewski BM; Taylor M
    J Orthop Res; 2010 May; 28(5):565-70. PubMed ID: 19950359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benefits of thin-shelled acetabular components for metal-on-metal hip resurfacing arthroplasty.
    Le Duff MJ; Wang CT; Wisk LE; Takamura KB; Amstutz HC
    J Orthop Res; 2010 Dec; 28(12):1665-70. PubMed ID: 20973065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized design for a novel acetabular component with three wings. A study of finite element analysis.
    Ma W; Zhang X; Wang J; Zhang Q; Chen W; Zhang Y
    J Surg Res; 2013 Jan; 179(1):78-86. PubMed ID: 22995660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening.
    Rapperport DJ; Carter DR; Schurman DJ
    J Orthop Res; 1987; 5(4):548-61. PubMed ID: 3681529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of femoral head size on the deformation of ultrahigh molecular weight polyethylene acetabular cups.
    Hoeltzel DA; Walt MJ; Kyle RF; Simon FD
    J Biomech; 1989; 22(11-12):1163-73. PubMed ID: 2625416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis.
    Thompson MS; Northmore-Ball MD; Tanner KE
    Proc Inst Mech Eng H; 2002; 216(4):237-45. PubMed ID: 12206520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo comparison of hip separation after metal-on-metal or metal-on-polyethylene total hip arthroplasty.
    Komistek RD; Dennis DA; Ochoa JA; Haas BD; Hammill C
    J Bone Joint Surg Am; 2002 Oct; 84(10):1836-41. PubMed ID: 12377916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress distributions in the acetabular region--I. Before and after total joint replacement.
    Vasu R; Carter DR; Harris WH
    J Biomech; 1982; 15(3):155-64. PubMed ID: 7096368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-backed acetabular cups in total hip arthroplasty.
    Ritter MA; Keating EM; Faris PM; Brugo G
    J Bone Joint Surg Am; 1990 Jun; 72(5):672-7. PubMed ID: 2355028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of backside polishing, cup angle, and polyethylene thickness on the contact stresses in metal-backed acetabular components.
    Kurtz SM; Edidin AA; Bartel DL
    J Biomech; 1997 Jun; 30(6):639-42. PubMed ID: 9165399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite-element analysis of a metal-backed acetabular component.
    Carter DR
    Hip; 1983; ():216-28. PubMed ID: 6671911
    [No Abstract]   [Full Text] [Related]  

  • 40. [A new method to optimize the adhesion between bone cement and acetabular bone in total hip arthroplasty].
    Wirtz DC; Lelgemann B; Jungwirth F; Niethard FU; Marx R
    Z Orthop Ihre Grenzgeb; 2003; 141(2):209-16. PubMed ID: 12695959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.