These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7096386)

  • 1. Dynamic response of arterial walls in vivo.
    Misra JC; Chakravarty S
    J Biomech; 1982; 15(4):317-24. PubMed ID: 7096386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic dynamic arterial response.
    Charalambous HP; Roussis PC; Giannakopoulos AE
    Comput Biol Med; 2017 Oct; 89():337-354. PubMed ID: 28858648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of initial stresses on the wave propagation in arteries.
    Misra JC; Choudhury KR
    J Math Biol; 1983; 18(1):53-67. PubMed ID: 6631263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of balloon angioplasty in residually stressed blood vessels-Application of a gradient-enhanced fibre damage model.
    Polindara C; Waffenschmidt T; Menzel A
    J Biomech; 2016 Aug; 49(12):2341-8. PubMed ID: 26924658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall.
    Hodis S; Zamir M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021914. PubMed ID: 18850872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separate determination of the pulsatile elastic and viscous forces developed in the arterial wall in vivo.
    Bauer RD; Busse R; Schabert A; Summa Y; Wetterer E
    Pflugers Arch; 1979 Jul; 380(3):221-6. PubMed ID: 573462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On large periodic motions of arteries.
    Demiray H; Vito RP
    J Biomech; 1983; 16(8):643-8. PubMed ID: 6643535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on large radial motion of arteries in vivo.
    Singh SI; Devi LS
    J Biomech; 1990; 23(11):1087-91. PubMed ID: 2277043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability.
    Holzapfel GA; Gasser TC; Ogden RW
    J Biomech Eng; 2004 Apr; 126(2):264-75. PubMed ID: 15179858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A description of arterial wall mechanics using limiting chain extensibility constitutive models.
    Horgan CO; Saccomandi G
    Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modeling of elastic deformation and vascular resistance of arterial and venous vasa vasorum].
    Maurice G; Wang X; Lehalle B; Stoltz JF
    J Mal Vasc; 1998 Oct; 23(4):282-8. PubMed ID: 9827409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional stress distribution in arteries.
    Chuong CJ; Fung YC
    J Biomech Eng; 1983 Aug; 105(3):268-74. PubMed ID: 6632830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological approaches of arteries.
    Bauer RD
    Biorheology Suppl; 1984; 1():159-67. PubMed ID: 6591971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.