These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7096387)

  • 1. Cartilages is poroelastic, not viscoelastic (including an exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time).
    McCutchen CW
    J Biomech; 1982; 15(4):325-7. PubMed ID: 7096387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.
    Wahlquist JA; DelRio FW; Randolph MA; Aziz AH; Heveran CM; Bryant SJ; Neu CP; Ferguson VL
    Acta Biomater; 2017 Dec; 64():41-49. PubMed ID: 29037894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.
    Han G; Hess C; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2018 Aug; 84():28-34. PubMed ID: 29729578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poroelastography: imaging the poroelastic properties of tissues.
    Konofagou EE; Harrigan TP; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2001 Oct; 27(10):1387-97. PubMed ID: 11731052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear viscoelastic properties of articular cartilage in shear.
    Spirt AA; Mak AF; Wassell RP
    J Orthop Res; 1989; 7(1):43-9. PubMed ID: 2908911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for estimating the Young's modulus of complete tracheal cartilage rings.
    Lambert RK; Baile EM; Moreno R; Bert J; Paré PD
    J Appl Physiol (1985); 1991 Mar; 70(3):1152-9. PubMed ID: 2032981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite deformation theory for cartilage and other soft hydrated connective tissues--I. Equilibrium results.
    Kwan MK; Lai WM; Mow VC
    J Biomech; 1990; 23(2):145-55. PubMed ID: 2312519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments.
    Zhu W; Mow VC; Koob TJ; Eyre DR
    J Orthop Res; 1993 Nov; 11(6):771-81. PubMed ID: 8283321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of the unconfined compression of articular cartilage.
    Armstrong CG; Lai WM; Mow VC
    J Biomech Eng; 1984 May; 106(2):165-73. PubMed ID: 6738022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
    Lai WM; Hou JS; Mow VC
    J Biomech Eng; 1991 Aug; 113(3):245-58. PubMed ID: 1921350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.