These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 7096439)

  • 21. What determines the folding of the chromatin fiber?
    van Holde K; Zlatanova J
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10548-55. PubMed ID: 8855215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat.
    Allan J; Staynov DZ; Gould H
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):885-9. PubMed ID: 6928686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion.
    Fu I; Cai Y; Geacintov NE; Zhang Y; Broyde S
    Biochemistry; 2017 Apr; 56(14):1963-1973. PubMed ID: 28304160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.
    Arya G; Schlick T
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16236-41. PubMed ID: 17060627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reassembly of nucleosomal histone octamers during replication of chromatin.
    Yamasu K; Senshu T
    J Biochem; 1987 Apr; 101(4):1041-9. PubMed ID: 3611040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.
    Stützer A; Liokatis S; Kiesel A; Schwarzer D; Sprangers R; Söding J; Selenko P; Fischle W
    Mol Cell; 2016 Jan; 61(2):247-59. PubMed ID: 26778125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary structures of the core histone N-terminal tails: their role in regulating chromatin structure.
    du Preez LL; Patterton HG
    Subcell Biochem; 2013; 61():37-55. PubMed ID: 23150245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of adenovirus chromatin.
    Mirza MA; Weber J
    Biochim Biophys Acta; 1982 Jan; 696(1):76-86. PubMed ID: 7082670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of H1 domains in determining higher order chromatin structure and H1 location.
    Allan J; Mitchell T; Harborne N; Bohm L; Crane-Robinson C
    J Mol Biol; 1986 Feb; 187(4):591-601. PubMed ID: 3458926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; Ausió J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of non-histone components and histone H1.
    Thoma F; Koller T
    J Mol Biol; 1981 Jul; 149(4):709-33. PubMed ID: 7310891
    [No Abstract]   [Full Text] [Related]  

  • 32. Histone hyperacetylation has little effect on the higher order folding of chromatin.
    McGhee JD; Nickol JM; Felsenfeld G; Rau DC
    Nucleic Acids Res; 1983 Jun; 11(12):4065-75. PubMed ID: 6866766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large scale preparation of nucleosomes containing site-specifically chemically modified histones lacking the core histone tail domains.
    Yang Z; Hayes JJ
    Methods; 2004 May; 33(1):25-32. PubMed ID: 15039084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription of dinucleosomal templates.
    Wolffe AP; Ura K
    Methods; 1997 May; 12(1):10-9. PubMed ID: 9169190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization of linker histone in chromatosomes by cryo-atomic force microscopy.
    Sheng S; Czajkowsky DM; Shao Z
    Biophys J; 2006 Aug; 91(4):L35-7. PubMed ID: 16782797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA-histone interactions in nucleosomes.
    Van Holde KE; Allen JR; Tatchell K; Weischet WO; Lohr D
    Biophys J; 1980 Oct; 32(1):271-82. PubMed ID: 6788105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Structure and dynamic of the nucleosome core particle].
    Bertin A; Mangenot S
    Med Sci (Paris); 2008; 24(8-9):715-9. PubMed ID: 18789217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HAT2 mediates histone H4K4 acetylation and affects micrococcal nuclease sensitivity of chromatin in Leishmania donovani.
    Jha PK; Khan MI; Mishra A; Das P; Sinha KK
    PLoS One; 2017; 12(5):e0177372. PubMed ID: 28486547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA.
    Krajewski WA; Becker PB
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1540-5. PubMed ID: 9465051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.