These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7097604)

  • 21. GABA and glycine modify the balance of rod and cone inputs to horizontal cells in the Xenopus retina.
    Witkovsky P; Stone S
    Exp Biol; 1987; 47(1):13-22. PubMed ID: 3666095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model.
    Frumkes TE; Miller RF; Slaughter M; Dacheux RF
    J Neurophysiol; 1981 Apr; 45(4):783-804. PubMed ID: 7229680
    [No Abstract]   [Full Text] [Related]  

  • 23. Amacrine cells in Necturus retina: evidence for independent gamma-aminobutyric acid- and glycine-releasing neurons.
    Miller RF; Dacheux RF; Frumkes TE
    Science; 1977 Nov; 198(4318):748-50. PubMed ID: 910159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmitters mediating inhibition of ganglion cells in the cat retina: iontophoretic studies in vivo.
    Ikeda H; Sheardown MJ
    Neuroscience; 1983 Apr; 8(4):837-53. PubMed ID: 6135176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of glycine and GABA on isolated bipolar cells of the mouse retina.
    Suzuki S; Tachibana M; Kaneko A
    J Physiol; 1990 Feb; 421():645-62. PubMed ID: 1693403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of some antagonists of the inhibitory transmitters on the bioelectric activity of the retinal cells.
    Belcheva S; Vitanova L
    Agressologie; 1974; 15(7):461-9. PubMed ID: 4471050
    [No Abstract]   [Full Text] [Related]  

  • 27. Glycinergic and GABAergic control of intensity-response function of frog ERG waves under different conditions of light stimulation.
    Popova E
    Acta Physiol Scand; 2000 Nov; 170(3):225-42. PubMed ID: 11167308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of GABA in ganglion cell receptive field organization in the frog retina.
    Bonaventure N; Wioland N
    Vision Res; 1981; 21(11):1653-5. PubMed ID: 6977938
    [No Abstract]   [Full Text] [Related]  

  • 29. Spatiotemporal patterns at the retinal output.
    Jacobs AL; Werblin FS
    J Neurophysiol; 1998 Jul; 80(1):447-51. PubMed ID: 9658062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium action potentials are not required for light-evoked release of GABA or glycine from retinal amacrine cells.
    Bieda MC; Copenhagen DR
    J Neurophysiol; 1999 Jun; 81(6):3092-5. PubMed ID: 10368424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptive field organization of retinal ganglion cells in the spastic mutant mouse.
    Stone C; Pinto LH
    J Physiol; 1992 Oct; 456():125-42. PubMed ID: 1338094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Center and surround excitation in the receptive fields of frog retinal ganglion cells.
    Donner K; Grönholm ML
    Vision Res; 1984; 24(12):1807-19. PubMed ID: 6335936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postsynaptic effects of long-range afferents in distant segments caudal to their entry point in rat spinal cord under the influence of picrotoxin or strychnine.
    Wall PD; Bennett DL
    J Neurophysiol; 1994 Dec; 72(6):2703-13. PubMed ID: 7897483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells.
    Shapley RM; Victor JD
    J Physiol; 1979 May; 290(2):141-61. PubMed ID: 469742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of picrotoxin and strychnine on the bioelectric activity of the turtle's retinal neurons.
    Belcheva S; Vitanova L
    Agressologie; 1978; 19(5):309-20. PubMed ID: 757654
    [No Abstract]   [Full Text] [Related]  

  • 36. Complex temporal response patterns with a simple retinal circuit.
    Werner B; Cook PB; Passaglia CL
    J Neurophysiol; 2008 Aug; 100(2):1087-97. PubMed ID: 18579656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Action and localization of glycine and taurine in the cat retina.
    Bolz J; Thier P; Voigt T; Wässle H
    J Physiol; 1985 May; 362():395-413. PubMed ID: 4020693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action and localization of gamma-aminobutyric acid in the cat retina.
    Bolz J; Frumkes T; Voigt T; Wässle H
    J Physiol; 1985 May; 362():369-93. PubMed ID: 3894625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional transmitters at retinal ganglion cells in the cat.
    Ikeda H; Sheardown MJ
    Vision Res; 1983; 23(10):1161-74. PubMed ID: 6139914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two kinds of recurrent inhibition of cat spinal alpha-motoneurones as differentiated pharmacologically.
    Cullheim S; Kellerth JO
    J Physiol; 1981 Mar; 312():209-24. PubMed ID: 7264991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.