These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7098890)

  • 1. Electrical responses to light: fast photovoltages of rhodopsin-containing membrane systems and their correlations with the spectral intermediates.
    Trissl HW
    Methods Enzymol; 1982; 81():431-9. PubMed ID: 7098890
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of charge on photoreceptor disc membranes and implications for charged lipid asymmetry.
    Tsui FC; Sundberg SA; Hubbell WL
    Biophys J; 1990 Jan; 57(1):85-97. PubMed ID: 2153422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin lateral diffusion as a function of rod outer segment disk membrane axial position.
    Kaplan MW
    Biophys J; 1984 Apr; 45(4):851-3. PubMed ID: 6722271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular biochemical manipulation of phototransduction in detached rod outer segments.
    Sather WA; Detwiler PB
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):9290-4. PubMed ID: 2827176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment.
    Liebman PA; Parker KR; Dratz EA
    Annu Rev Physiol; 1987; 49():765-91. PubMed ID: 3032081
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on visual transduction in the retinal rods of the frog.
    Baumann C
    Ophthalmic Res; 1984; 16(1-2):8-14. PubMed ID: 6610153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transducin cascade is involved in the light-induced structural changes observed by neutron diffraction on retinal rod outer segments.
    Vuong TM; Pfister C; Worcester DL; Chabre M
    Biophys J; 1987 Oct; 52(4):587-94. PubMed ID: 3118983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular transducing system in visual cells.
    Maeda A; Yoshizawa T
    Photochem Photobiol; 1982 Jun; 35(6):891-8. PubMed ID: 6750665
    [No Abstract]   [Full Text] [Related]  

  • 9. "Self-screening" of rhodopsin in rod outer segments.
    Alpern M; Fulton AB; Baker BN
    Vision Res; 1987; 27(9):1459-70. PubMed ID: 3445480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in phototransduction.
    Stavenga DG; de Grip WJ
    Biophys Struct Mech; 1983; 9(4):225-30. PubMed ID: 6303464
    [No Abstract]   [Full Text] [Related]  

  • 11. Animal rhodopsin as a photogenerator of an electric potential that increases photoreceptor membrane permeability.
    Drachev LA; Kalamkarov GR; Kaulen AD; Ostrovsky MA; Skulachev VP
    FEBS Lett; 1980 Sep; 119(1):125-31. PubMed ID: 6253316
    [No Abstract]   [Full Text] [Related]  

  • 12. Phototransduction in vertebrate rods.
    Schwartz EA
    Annu Rev Neurosci; 1985; 8():339-67. PubMed ID: 2580472
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of the lipid environment of the properties of rhodopsin in the photoreceptor membrane.
    Bonting SL; van Breugel PJ; Daemen FJ
    Adv Exp Med Biol; 1977; 83():175-89. PubMed ID: 920457
    [No Abstract]   [Full Text] [Related]  

  • 14. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs.
    Renk GE; Crouch RK; Feix JB
    Biophys J; 1988 Mar; 53(3):361-5. PubMed ID: 2832012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical signaling in vertebrate photoreceptors.
    Baylor DA; Nunn B
    Methods Enzymol; 1982; 81():403-23. PubMed ID: 7098888
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetic demonstration of a sensory rhodopsin in bacteria.
    Spudich JL
    Prog Clin Biol Res; 1984; 164():221-9. PubMed ID: 6522400
    [No Abstract]   [Full Text] [Related]  

  • 17. On the rise time of the R1-component of the "early receptor potential": evidence for a fast light-induced charge separation in rhodopsin.
    Trissl HW
    Biophys Struct Mech; 1982; 8(3):213-30. PubMed ID: 7093432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Lateral diffusion of rhodopsin in the surface membrane of rat retinal rod outer segment].
    GovardovskiÄ­ VI
    Biofizika; 1976 Nov; 21(6):1019-23. PubMed ID: 1009194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transbilayer coupling mechanism for the formation of lipid asymmetry in biological membranes. Application to the photoreceptor disc membrane.
    Hubbell WL
    Biophys J; 1990 Jan; 57(1):99-108. PubMed ID: 2297564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin-to-metarhodopsin II transition triggers amplified changes in cytosol ATP and ADP in intact retinal rod outer segments.
    Zuckerman R; Schmidt GJ; Dacko SM
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6414-8. PubMed ID: 6983071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.