These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7099806)
1. Noninvasive investigation of cerebral ischemia by phosphorus nuclear magnetic resonance. Delpy DT; Gordon RE; Hope PL; Parker D; Reynolds EO; Shaw D; Whitehead MD Pediatrics; 1982 Aug; 70(2):310-3. PubMed ID: 7099806 [No Abstract] [Full Text] [Related]
2. Some individual peculiarities of brain energy metabolism and their changes in the condition of brain ischemia. An in vivo 31P nuclear magnetic resonance study. Gannushkina IV; Baranchikova MV; Sibeldina LA; Semenova NA; Lichody SS; Konradov AA Neuropatol Pol; 1990; 28(3-4):195-203. PubMed ID: 2097544 [No Abstract] [Full Text] [Related]
3. Hypothermic circulatory arrest: 31-phosphorus nuclear magnetic resonsance of isolated perfused neonatal rat brain. Norwood WI; Norwood CR; Ingwall JS; Castaneda AR; Fossel ET J Thorac Cardiovasc Surg; 1979 Dec; 78(6):823-30. PubMed ID: 41142 [No Abstract] [Full Text] [Related]
4. [In vivo 31P NMR studies on cerebral infarction using topical magnetic resonance (TMR)--time course of high energy phosphorus compounds content in ischemic and recirculated brain]. Naruse S; Horikawa Y; Tanaka C; Hirakawa K; Nishikawa H; Koizuka I; Takada S; Watari H No To Shinkei; 1983 Jun; 35(6):603-9. PubMed ID: 6626382 [No Abstract] [Full Text] [Related]
5. Continuous noninvasive organ biochemistry and NMR imaging of brain. Haselgrove JC; Eleff S; Leigh JS; Gyulai L; Bolinger L; Subramanian HV; Chance B Res Publ Assoc Res Nerv Ment Dis; 1985; 63():271-84. PubMed ID: 4023404 [No Abstract] [Full Text] [Related]
6. [Changes in energy metabolism in the brain in experimental cerebral ischemia of different degree of severity (nuclear magnetic resonance-spectroscopic study)]. Gannushkina IV; Baranchikova MV; Semenova NA; Sibe'ldina LA; Likhodiĭ SS; Konradov AA Zh Nevropatol Psikhiatr Im S S Korsakova; 1989; 89(9):3-6. PubMed ID: 2609823 [TBL] [Abstract][Full Text] [Related]
7. In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Petroff OA; Prichard JW; Behar KL; Alger JR; Shulman RG Ann Neurol; 1984 Aug; 16(2):169-77. PubMed ID: 6476792 [TBL] [Abstract][Full Text] [Related]
8. Consequences of reduced cerebral blood flow in brain development. II. Retardation of neurological outcome and phosphorus metabolism. Nioka S; Zaman A; Nagy D; Miller B; Finlay BL; Chance B Exp Neurol; 1993 Dec; 124(2):343-50. PubMed ID: 8287931 [TBL] [Abstract][Full Text] [Related]
9. [Topical nuclear magnetic resonance--a non-invasive probe for biochemical measurements in living organisms]. Aue WP Radiologe; 1983 Aug; 23(8):357-60. PubMed ID: 6578539 [TBL] [Abstract][Full Text] [Related]
10. Metabolic studies of whole animals and humans using phosphorus nuclear magnetic resonance. Gadian DG Biosci Rep; 1981 Jun; 1(6):449-60. PubMed ID: 6945878 [No Abstract] [Full Text] [Related]
11. Nuclear magnetic resonance studies of epithelial metabolism and function. Balaban RS Fed Proc; 1982 Jan; 41(1):42-7. PubMed ID: 7035223 [TBL] [Abstract][Full Text] [Related]
12. Magnetic resonance spectroscopy of ischemic heart disease. Sardanelli F; Zandrino F; Molinari G; Cordone S; Delfino L; Levrero F Rays; 1999; 24(1):149-64. PubMed ID: 10358392 [TBL] [Abstract][Full Text] [Related]
13. How might nuclear magnetic resonance be used in the in vivo monitoring of energy metabolism and substrate flow? Chance B J Trauma; 1984 Sep; 24(9 Suppl):S154-66. PubMed ID: 6481847 [No Abstract] [Full Text] [Related]
14. Phosphorus metabolites in different muscles of the rat leg by 31P image-selected in vivo spectroscopy. Madhu B; Lagerwall K; Soussi B NMR Biomed; 1996 Dec; 9(8):327-32. PubMed ID: 9176886 [TBL] [Abstract][Full Text] [Related]
15. Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on single-quantum- and triple-quantum-filtered 23Na and 31P nuclear magnetic resonance of the subcutaneously implanted 9L glioma. Winter PM; Poptani H; Bansal N Cancer Res; 2001 Mar; 61(5):2002-7. PubMed ID: 11280759 [TBL] [Abstract][Full Text] [Related]
16. ATP and pH predictors of histologic damage following global cerebral ischemia in the rat. Sárváry E; Halsey JH; Conger KA; Garcia JH; Kovách AG Acta Physiol Hung; 1994; 82(2):109-24. PubMed ID: 7887171 [TBL] [Abstract][Full Text] [Related]
17. Assessment of a new cardioplegic solution for long-term heart preservation: experimental study using 31P magnetic resonance spectroscopy and biochemical analyses. Bernard M; Caus T; Sciaky M; Monties JR; Cozzone PJ Transplant Proc; 1996 Feb; 28(1):48-9. PubMed ID: 8644318 [No Abstract] [Full Text] [Related]
18. Prerequisites and initial experience for the noninvasive routine evaluation of viability of experimental and human organ transplants by magnetic resonance spectroscopy. Henze E; Lietzenmayer R; Kunz R; Schnur G; Clausen M; Schoser K; Beger HG; Adam WE; Ankele J; Beck C Transplant Proc; 1990 Oct; 22(5):2404-8. PubMed ID: 2219413 [No Abstract] [Full Text] [Related]
19. Normal and abnormal metabolism in injured rat brains by P-31 NMR spectroscopy. Gaggelli E; Ishige N; Pogliani L; Valensin G In Vivo; 1989; 3(2):99-100. PubMed ID: 2519845 [No Abstract] [Full Text] [Related]
20. Effects of increased ICP on brain phosphocreatine and lactate determined by simultaneous 1H and 31P NMR spectroscopy. Sutton LN; McLaughlin AC; Kemp W; Schnall MD; Cho BK; Langfitt TW; Chance B J Neurosurg; 1987 Sep; 67(3):381-6. PubMed ID: 3612271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]