These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7101767)

  • 1. Diffuse and local effects of light adaptation in photoreceptors of the honey bee drone.
    Bader CR; Baumann F; Bertrand D; Carreras J; Fuortes G
    Vision Res; 1982; 22(2):311-7. PubMed ID: 7101767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of extracellular calcium and of light adaptation on the response to dim light in honey bee drone photoreceptors.
    Raggenbass M
    J Physiol; 1983 Nov; 344():525-48. PubMed ID: 6655592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.
    Cornwall MC; Gorman AL
    J Physiol; 1983 Jul; 340():307-34. PubMed ID: 6887052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L).
    Bader C; Baumann F; Bertrand D
    J Gen Physiol; 1976 Apr; 67(4):475-91. PubMed ID: 818341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane conductances involved in amplification of small signals by sodium channels in photoreceptors of drone honey bee.
    Vallet AM; Coles JA; Eilbeck JC; Scott AC
    J Physiol; 1992 Oct; 456():303-24. PubMed ID: 1338099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvillar components of light adaptation in blowflies.
    Hochstrate P; Hamdorf K
    J Gen Physiol; 1990 May; 95(5):891-910. PubMed ID: 2362184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium regulates some, but not all, aspects of light adaptation in rod photoreceptors.
    Nicol GD; Bownds MD
    J Gen Physiol; 1989 Aug; 94(2):233-59. PubMed ID: 2507738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal spread of adaptation in the rods of the frog's retina.
    Hemilä S; Reuter T
    J Physiol; 1981 Jan; 310():501-28. PubMed ID: 6971931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of light adaptation and intracellular injection of sodium on the receptor potential of drone retinula cells.
    Baumann F
    J Physiol; 1972 Oct; 226(2):114P-115P. PubMed ID: 5085314
    [No Abstract]   [Full Text] [Related]  

  • 10. Chloride enters glial cells and photoreceptors in response to light stimulation in the retina of the honey bee drone.
    Coles JA; Orkand RK; Yamate CL
    Glia; 1989; 2(5):287-97. PubMed ID: 2530169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased intracellular sodium mimics some but not all aspects of photoreceptor adaptation in the ventral eye of Limulus.
    Fein A; Charlton JS
    J Gen Physiol; 1977 Nov; 70(5):601-20. PubMed ID: 591914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina.
    Coles JA; Orkand RK
    J Physiol; 1985 May; 362():415-35. PubMed ID: 4020694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of sensitivity in photoreceptors of the honey been drone by light and by Ca2+.
    Walz B
    J Comp Physiol A; 1992 Jun; 170(5):605-13. PubMed ID: 1507158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative comparison of the effects of intracellular calcium injection and light adaptation on the photoresponse of Limulus ventral photoreceptors.
    Fein A; Charlton JS
    J Gen Physiol; 1977 Nov; 70(5):591-600. PubMed ID: 591913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of lead on photoreceptor response amplitude--influence of removing external calcium and bleaching rhodopsin.
    Sillman AJ; Bolnick DA; Bosetti JB; Haynes LW; Walter AE
    Neurotoxicology; 1986; 7(1):1-8. PubMed ID: 3487055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The possible role of rhodopsin and the microvillus in light adaptation of the photoreceptors of an insect.
    Razmjoo S; Hamdorf K
    Symp Soc Exp Biol; 1983; 36():109-31. PubMed ID: 6399778
    [No Abstract]   [Full Text] [Related]  

  • 17. Physiological roles of Na+/Ca2+ exchange in Limulus ventral photoreceptors.
    O'Day PM; Gray-Keller MP; Lonergan M
    J Gen Physiol; 1991 Feb; 97(2):369-91. PubMed ID: 2016582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery from adapting light in Limulus ventral photoreceptors.
    Fein A; Charlton JS
    Brain Res; 1978 Sep; 153(3):585-90. PubMed ID: 698796
    [No Abstract]   [Full Text] [Related]  

  • 19. Light adaptation in cone photoreceptors of the salamander: a role for cytoplasmic calcium.
    Matthews HR; Fain GL; Murphy RL; Lamb TD
    J Physiol; 1990 Jan; 420():447-69. PubMed ID: 2109062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance.
    Fein A; DeVoe RD
    J Gen Physiol; 1973 Mar; 61(3):273-89. PubMed ID: 4689620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.