These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7102293)

  • 61. A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish.
    Riley BB; Zhu C; Janetopoulos C; Aufderheide KJ
    Dev Biol; 1997 Nov; 191(2):191-201. PubMed ID: 9398434
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears.
    Zheng JL; Gao WQ
    Nat Neurosci; 2000 Jun; 3(6):580-6. PubMed ID: 10816314
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantitative analysis of kanamycin ototoxicosis.
    Toyoda Y; Saito H; Matsuoka H; Takenaka H; Oshima W; Mizukoshi O
    Acta Otolaryngol; 1977; 84(3-4):202-12. PubMed ID: 303038
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Variation in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes.
    Platt C; Popper AN
    Scan Electron Microsc; 1984; (Pt 4):1915-24. PubMed ID: 6523061
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Basic helix-loop-helix gene Hes6 delineates the sensory hair cell lineage in the inner ear.
    Qian D; Radde-Gallwitz K; Kelly M; Tyrberg B; Kim J; Gao WQ; Chen P
    Dev Dyn; 2006 Jun; 235(6):1689-700. PubMed ID: 16534784
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solitary hair cells are distributed throughout the extramacular epithelium in the bullfrog's saccule.
    Gale JE; Meyers JR; Corwin JT
    J Assoc Res Otolaryngol; 2000 Sep; 1(2):172-82. PubMed ID: 11545144
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1.
    Littlewood Evans A; Müller U
    Nat Genet; 2000 Apr; 24(4):424-8. PubMed ID: 10742111
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of the morphology of the inner ear between newts and frogs in relation to their locomotory capability.
    Harada Y; Kasuga S; Tamura S
    Zoolog Sci; 2002 May; 19(5):583-92. PubMed ID: 12130811
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Ultrastructure of the sensory formations of the internal ear in the common frog].
    Tikhomirova LI
    Arkh Anat Gistol Embriol; 1985 Nov; 89(11):35-40. PubMed ID: 3879168
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin.
    Goodyear R; Richardson G
    J Comp Neurol; 1994 Jul; 345(2):267-78. PubMed ID: 7929901
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distribution of gentamicin in inner ear after local administration via a chitosan glycerophosphate hydrogel delivery system.
    Luo J; Xu L
    Ann Otol Rhinol Laryngol; 2012 Mar; 121(3):208-16. PubMed ID: 22530482
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Correlation between auditory brainstem recordings and morphology as seen through the scanning electron microscope.
    Hultcrantz M
    Scanning Microsc; 1988 Sep; 2(3):1725-37. PubMed ID: 3059484
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A transmission and scanning electron microscopic study of the saccule in five species of catfishes.
    Jenkins DB
    Am J Anat; 1979 Jan; 154(1):81-101. PubMed ID: 760489
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The inner ear of the lungfish Protopterus.
    Platt C; Jørgensen JM; Popper AN
    J Comp Neurol; 2004 Apr; 471(3):277-88. PubMed ID: 14991561
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Degenerative changes in the human vestibular sensory epithelia.
    Rosenhall U; Rubin W
    Acta Otolaryngol; 1975; 79(1-2):67-80. PubMed ID: 167544
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural similarities between kinocilium of vestibular hair cell and tracheal motile cilium in the guinea pig.
    Arima T; Masuda H; Uemura T
    Auris Nasus Larynx; 1986; 13 Suppl 2():S15-9. PubMed ID: 3827753
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sensorineural interactions in embryonic stages.
    Merchan JA; del Campo FS; Rueda J
    Acta Otolaryngol Suppl; 1986; 429():11-5. PubMed ID: 3461669
    [No Abstract]   [Full Text] [Related]  

  • 78. High-resolution imaging of the mouse-hair-cell hair bundle by scanning electron microscopy.
    Grillet N
    STAR Protoc; 2022 Mar; 3(1):101213. PubMed ID: 35257116
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Are accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species.
    Schulz-Mirbach T; Ladich F; Plath M; Metscher BD; Heß M
    Front Zool; 2014 Mar; 11(1):25. PubMed ID: 24645675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. SOX2, JAGGED1, β-Catenin, and Vitamin D Receptor Expression Patterns during Early Development and Innervation of the Human Inner Ear.
    Mikulić P; Ogorevc M; Petričević M; Kaličanin D; Tafra R; Saraga-Babić M; Mardešić S
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.