These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 710397)
1. Characteristics of the active transport of Ca2+ by submitochondrial vesicles. Niggli V; Mattenberger M; Gazzotti P Eur J Biochem; 1978 Sep; 89(2):361-6. PubMed ID: 710397 [TBL] [Abstract][Full Text] [Related]
2. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system]. Novgorodov SA; Dragunova SF; Iaguzhinskiĭ LS Biofizika; 1982; 27(2):244-8. PubMed ID: 6462181 [TBL] [Abstract][Full Text] [Related]
3. Phosphate transport in rat liver mitochondria. Properties of a Ca2+-activated uptake process in inverted inner membrane vesicles. Wehrle JP; Pedersen PL J Biol Chem; 1979 Aug; 254(15):7269-75. PubMed ID: 110804 [No Abstract] [Full Text] [Related]
4. ATP-driven proton fluxes across membranes of secretory organelles. Cidon S; Ben-David H; Nelson N J Biol Chem; 1983 Oct; 258(19):11684-8. PubMed ID: 6619137 [TBL] [Abstract][Full Text] [Related]
5. Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. Docampo R; Vercesi AE J Biol Chem; 1989 Jan; 264(1):108-11. PubMed ID: 2491844 [TBL] [Abstract][Full Text] [Related]
6. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles. Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139 [No Abstract] [Full Text] [Related]
7. Submitochondrial location of ruthenium red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria. Bygrave FL; Heaney TP; Ramachandran C Biochem J; 1978 Sep; 174(3):1011-9. PubMed ID: 728072 [TBL] [Abstract][Full Text] [Related]
8. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Rizzuto R; Pitton G; Azzone GF Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384 [TBL] [Abstract][Full Text] [Related]
9. A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. Bernardi P; Azzone GF FEBS Lett; 1982 Mar; 139(1):13-6. PubMed ID: 7075762 [No Abstract] [Full Text] [Related]
10. The interaction of Ga2+ with mitochondria from human myometrium. Malmström K; Carafoli E Arch Biochem Biophys; 1977 Aug; 182(2):657-66. PubMed ID: 197891 [No Abstract] [Full Text] [Related]
11. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Vercesi AE; Docampo R Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):463-7. PubMed ID: 1376113 [TBL] [Abstract][Full Text] [Related]
12. Effects of chronic ethanol intoxication on oxidative phosphorylation in rat liver submitochondrial particles. Thayer WS; Rubin E J Biol Chem; 1979 Aug; 254(16):7717-23. PubMed ID: 572826 [No Abstract] [Full Text] [Related]
13. Energy-dependent uptake of ochratoxin A by mitochondria. Meisner H Arch Biochem Biophys; 1976 Mar; 173(1):132-40. PubMed ID: 1259435 [No Abstract] [Full Text] [Related]
14. Triphenyltetrazolium and its derivatives are anisotropic inhibitors of energy transduction in oxidative phosphorylation in rat liver mitochondria. Higuti T; Arakaki R; Kotera Y; Takigawa M; Tani I; Shibuya M Biochim Biophys Acta; 1983 Oct; 725(1):1-9. PubMed ID: 6626537 [TBL] [Abstract][Full Text] [Related]
15. Sidedness of inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by ethidium bromide. Higuti T; Yokota M; Arakaki N; Hattori A; Tani I Biochim Biophys Acta; 1978 Aug; 503(2):211-22. PubMed ID: 28755 [TBL] [Abstract][Full Text] [Related]
16. The control of uncoupler-activated ATPase activity in rat liver mitochondria by adenine nucleotide transport. The effect of glucagon treatment. Titheradge MA; Haynes RC J Biol Chem; 1980 Feb; 255(4):1471-7. PubMed ID: 6444411 [TBL] [Abstract][Full Text] [Related]
17. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles. Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136 [TBL] [Abstract][Full Text] [Related]
18. Restoration of membrane potential in mitochondria deenergized with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Toninello A; Siliprandi N Biochim Biophys Acta; 1982 Nov; 682(2):289-92. PubMed ID: 7171582 [TBL] [Abstract][Full Text] [Related]
19. Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red. Bernardi P; Paradisi V; Pozzan T; Azzone GF Biochemistry; 1984 Apr; 23(8):1645-51. PubMed ID: 6202317 [TBL] [Abstract][Full Text] [Related]
20. Generation of high delta psi in respiring submitochondrial particles by steady-state accumulation of oxidized N,N,N',N'-tetramethyl-p-phenylenediamine. Sagi-Eisenberg R; Gutman M Eur J Biochem; 1979 Jun; 97(1):127-32. PubMed ID: 477661 [No Abstract] [Full Text] [Related] [Next] [New Search]