BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7104014)

  • 1. Hepatic glutathione and hepatotoxicity: effects of cytochrome P-450 complexing compounds SKF 525-A, L-alpha acetylmethadol (LAAM), norLAAM, and piperonyl butoxide.
    James RC; Harbison RD
    Biochem Pharmacol; 1982 May; 31(10):1829-35. PubMed ID: 7104014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-alpha-acetylmethadol-induced tissue alterations in mice.
    James RC; Freeman RW; Harbison RD
    Drug Chem Toxicol; 1984; 7(1):91-112. PubMed ID: 6723548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of cytochrome P450 3A4 in the N-demethylation of L-alpha-acetylmethadol (LAAM), norLAAM, and methadone.
    Moody DE; Alburges ME; Parker RJ; Collins JM; Strong JM
    Drug Metab Dispos; 1997 Dec; 25(12):1347-53. PubMed ID: 9394023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic glutathione and hepatotoxicity: changes induced by selected narcotics.
    James RC; Goodman DR; Harbison RD
    J Pharmacol Exp Ther; 1982 Jun; 221(3):708-14. PubMed ID: 7086683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depression of hepatic glutathione by opioid analgesic drugs in mice.
    Skoulis NP; James RC; Harbison RD; Roberts SM
    Toxicol Appl Pharmacol; 1989 Jun; 99(1):139-47. PubMed ID: 2471291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential N-demethylation of l-alpha-acetylmethadol (LAAM) and norLAAM by cytochrome P450s 2B6, 2C18, and 3A4.
    Neff JA; Moody DE
    Biochem Biophys Res Commun; 2001 Jun; 284(3):751-6. PubMed ID: 11396966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paradoxical role of cytochrome P450 3A in the bioactivation and clinical effects of levo-alpha-acetylmethadol: importance of clinical investigations to validate in vitro drug metabolism studies.
    Kharasch ED; Whittington D; Hoffer C; Krudys K; Craig K; Vicini P; Sheffels P; Lalovic B
    Clin Pharmacokinet; 2005; 44(7):731-51. PubMed ID: 15966756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the cytochrome P-450 multifunctional oxidase by N-propargyl analogs of SKF-525 A and acetylmethadol.
    Kraus JL; Yaouanc JJ
    Eur J Drug Metab Pharmacokinet; 1979; 4(4):219-24. PubMed ID: 119638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The induction of hepatic cytochrome P-450 in C57 BL/10 and DBA/2 mice by isosafrole and piperonyl butoxide. A comparative study with other inducing agents.
    Fennell TR; Sweatman BC; Bridges JW
    Chem Biol Interact; 1980 Aug; 31(2):189-201. PubMed ID: 7389009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatotoxicity of precocene I in rats. Role of metabolic activation in vivo.
    Ravindranath V; Boyd MR; Jerina DM
    Biochem Pharmacol; 1987 Feb; 36(4):441-6. PubMed ID: 3827936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of agents affecting monooxygenase activity on taurolithocholic acid-induced cholestasis.
    Dahlström-King L; Couture J; Plaa GL
    Toxicol Lett; 1992 Dec; 63(3):243-52. PubMed ID: 1283232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the effects of piperine and piperonyl butoxide on hepatic drug-metabolizing enzyme system in rats.
    Dalvi RR; Dalvi PS
    Drug Chem Toxicol; 1991; 14(1-2):219-29. PubMed ID: 1889377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of l-alpha-acetylmethadol (LAAM), norLAAM, and dinorLAAM in clinical and in vitro samples using liquid chromatography with electrospray ionization and tandem mass spectrometry.
    Huang W; Bemis PA; Slawson MH; Moody DE
    J Pharm Sci; 2003 Jan; 92(1):10-20. PubMed ID: 12486677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of drug and chemical pretreatments on biliary excretion of phenylcyclohexene in the rat.
    Law FC; Chakrabarti S
    Drug Chem Toxicol; 1984; 7(3):273-82. PubMed ID: 6734467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of hepatic microsomal oxidative drug metabolism in rats by the opiate maintenance drugs acetylmethadol, propoxyphene, and methadone.
    Roberts SM; Franklin MR
    Life Sci; 1979 Sep; 25(10):845-51. PubMed ID: 491835
    [No Abstract]   [Full Text] [Related]  

  • 16. N-demethylation of levo-alpha-acetylmethadol by human placental aromatase.
    Deshmukh SV; Nanovskaya TN; Hankins GD; Ahmed MS
    Biochem Pharmacol; 2004 Mar; 67(5):885-92. PubMed ID: 15104241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of methadone and levo-alpha-acetylmethadol (LAAM) by human intestinal cytochrome P450 3A4 (CYP3A4): potential contribution of intestinal metabolism to presystemic clearance and bioactivation.
    Oda Y; Kharasch ED
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1021-32. PubMed ID: 11504799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gas chromatographic-positive ion chemical ionization-mass spectrometric method for the determination of I-alpha-acetylmethadol (LAAM), norLAAM, and dinorLAAM in plasma, urine, and tissue.
    Moody DE; Crouch DJ; Sakashita CO; Alburges ME; Minear K; Schulthies JE; Foltz RL
    J Anal Toxicol; 1995 Oct; 19(6):343-51. PubMed ID: 8926727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additional metabolic correlates of 1-alpha-acetylmethadol (LAAM)-induced cellular tolerance and physical dependence: the role of the hepatic microsomal electron transport system.
    Masten LW; Barnes TB
    Drug Alcohol Depend; 1979 Nov; 4(6):449-60. PubMed ID: 117996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminative stimulus properties of levo-alpha-acetylmethadol and its metabolites.
    Holtzman SG
    Pharmacol Biochem Behav; 1979 Apr; 10(4):565-8. PubMed ID: 461484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.