These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7104038)

  • 61. NO donors stimulate noradrenaline release from rat hippocampus in a calmodulin-dependent manner in the presence of L-cysteine.
    Satoh S; Kimura T; Toda M; Miyazaki H; Ono S; Narita H; Murayama T; Nomura Y
    J Cell Physiol; 1996 Oct; 169(1):87-96. PubMed ID: 8841425
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrastructural pathology of intrapulmonary arteries in 3-methylindole-induced pneumotoxicity in cattle: II. Glycogen accumulation in the smooth muscle cells and intimal changes.
    Atwal OS; Persofsky MS
    J Pathol; 1984 Feb; 142(2):141-9. PubMed ID: 6699755
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Prevention of patulin toxicity on rumen microbial fermentation by SH-containing reducing agents.
    Morgavi DP; Boudra H; Jouany JP; Graviou D
    J Agric Food Chem; 2003 Nov; 51(23):6906-10. PubMed ID: 14582994
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evidence supporting the formation of 2,3-epoxy-3-methylindoline: a reactive intermediate of the pneumotoxin 3-methylindole.
    Skordos KW; Skiles GL; Laycock JD; Lanza DL; Yost GS
    Chem Res Toxicol; 1998 Jul; 11(7):741-9. PubMed ID: 9671536
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Covalent binding of phenytoin to protein and modulation of phenytoin metabolism by thiols in A/J mouse liver microsomes.
    Roy D; Snodgrass WR
    J Pharmacol Exp Ther; 1990 Mar; 252(3):895-900. PubMed ID: 2319474
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes.
    Diaz GJ; Skordos KW; Yost GS; Squires EJ
    Drug Metab Dispos; 1999 Oct; 27(10):1150-6. PubMed ID: 10497141
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol.
    Boyd MR; Burka LT
    J Pharmacol Exp Ther; 1978 Dec; 207(3):687-97. PubMed ID: 731424
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pulmonary lesions induced by 3-methylindole and bovine respiratory syncytial virus in calves.
    Castleman WL; Lacy S; Slauson DO; Atz J
    Am J Vet Res; 1990 Nov; 51(11):1806-14. PubMed ID: 2173450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ruminal and plasma concentrations of 3-methylindole associated with tryptophan-induced pulmonary edema and emphysema in cattle.
    Yokoyama MT; Carlson JR; Dickinson EO
    Am J Vet Res; 1975 Sep; 36(9):1349-52. PubMed ID: 1163874
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of N-acetyl-L-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes.
    Nakagawa Y; Suzuki T; Nakajima K; Inomata A; Ogata A; Nakae D
    Arch Toxicol; 2014 Jan; 88(1):115-26. PubMed ID: 23877122
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells.
    Lanza DL; Code E; Crespi CL; Gonzalez FJ; Yost GS
    Drug Metab Dispos; 1999 Jul; 27(7):798-803. PubMed ID: 10383923
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Configuration of thiols dictates their ability to promote iron-induced reactive oxygen species generation.
    Yang EY; Campbell A; Bondy SC
    Redox Rep; 2000; 5(6):371-5. PubMed ID: 11140748
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protection by glutathione and other thiol compounds against the loss of protein thiols and tocopherol homologs during microsomal lipid peroxidation.
    Murphy ME; Scholich H; Sies H
    Eur J Biochem; 1992 Nov; 210(1):139-46. PubMed ID: 1446667
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Effect of sulfur-containing compounds on experimental diabetes. IV. Variation in the plasma insulin level by the administration of glutathione, 2-mercaptopropionylglycine, cysteine and their oxidized type compounds].
    Chiba T
    Yakugaku Zasshi; 1969 Apr; 89(4):565-71. PubMed ID: 5816924
    [No Abstract]   [Full Text] [Related]  

  • 75. Effects of oral dosage with tryptamine analogues in cattle.
    Jarvie A; Breeze RG; Selman IE; Wiseman A
    Vet Rec; 1977 Sep; 101(13):267-8. PubMed ID: 303401
    [No Abstract]   [Full Text] [Related]  

  • 76. The metabolism and disposition of 3-methylindole in goats.
    Hammond AC; Carlson JR; Willett JD
    Life Sci; 1979 Oct; 25(15):1301-6. PubMed ID: 513961
    [No Abstract]   [Full Text] [Related]  

  • 77. Thiol-mediated incorporation of radiolabel from 1-[14C]-methyl-4-phenyl-5-nitrosoimidazole into DNA. A model for the biological activity of 5-nitroimidazoles.
    Ehlhardt WJ; Goldman P
    Biochem Pharmacol; 1989 Apr; 38(7):1175-80. PubMed ID: 2523218
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reduction of the toxicity of "radiomimetic" alkylating agents by thiol pretreatment. VI. The mechanism of protection by cysteine.
    Ball CR; Connors TA
    Biochem Pharmacol; 1967 Mar; 16(3):509-19. PubMed ID: 6034367
    [No Abstract]   [Full Text] [Related]  

  • 79. Inhibition of color development in the Lowry-Lopez phosphorus method by sulfhydryl compounds and its counteraction by copper.
    BRUEMMER JH; O'DELL BL
    J Biol Chem; 1956 Mar; 219(1):283-6. PubMed ID: 13295280
    [No Abstract]   [Full Text] [Related]  

  • 80. Bromination of skatole. A simple preparation of 3-methyloxindole and 2-bromo-3-methylindole.
    Hino T; Nakagawa M; Akaboshi S
    Chem Pharm Bull (Tokyo); 1967 Nov; 15(11):1800-3. PubMed ID: 5583842
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.