These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7104314)

  • 1. Precise structural information for transient enzyme-substrate complexes by a combined X-ray crystallographic-resonance Raman spectroscopic approach.
    Huber CP; Ozaki Y; Pliura DH; Storer AC; Carey PR
    Biochemistry; 1982 Jun; 21(13):3109-15. PubMed ID: 7104314
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of transient enzyme-substrate bonds by resonance Raman spectroscopy.
    Carey PR; Storer AC
    Annu Rev Biophys Bioeng; 1984; 13():25-49. PubMed ID: 6378071
    [No Abstract]   [Full Text] [Related]  

  • 3. Vibrational spectra of scissile bonds in enzyme active sites: a resonance Raman study of dithioacylpapains.
    Ozaki Y; Pliura DH; Carey PR; Storer AC
    Biochemistry; 1982 Jun; 21(13):3102-8. PubMed ID: 7104313
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the substrate conformations in the active sites of papain, chymopapain, ficin and bromelain by resonance Raman spectroscopy.
    Carey PR; Ozaki Y; Storer AC
    Biochem Biophys Res Commun; 1983 Dec; 117(3):725-31. PubMed ID: 6365089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxed and perturbed substrate conformations in enzyme active sites: evidence from multichannel resonance raman spectra.
    Storer AC; Lee H; Carey PR
    Biochemistry; 1983 Sep; 22(20):4789-96. PubMed ID: 6626534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational states of N-acylglycine dithioesters in solution: resonance Raman studies of isotopically substituted models for enzyme-substrate complexes.
    Lee H; Storer AC; Carey PR
    Biochemistry; 1983 Sep; 22(20):4781-9. PubMed ID: 6626533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman evidence for substrate reorginization in the active site of papain.
    Carey PR; Carriere RG; Lynn KR; Schneider H
    Biochemistry; 1976 Jun; 15(11):2387-93. PubMed ID: 1276146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison between the binding modes of a substrate and inhibitor to papain as observed in complex crystal structures.
    Yamamoto D; Ishida T; Inoue M
    Biochem Biophys Res Commun; 1990 Sep; 171(2):711-6. PubMed ID: 2403359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of resonance Raman spectroscopy to monitor catalytically important bonds during enzymic catalysis. Application to the hydrolysis of methyl thionohippurate by papain.
    Storer AC; Murphy WF; Carey PR
    J Biol Chem; 1979 May; 254(9):3163-5. PubMed ID: 429339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative resonance Raman spectroscopic and kinetic studies of acyl-enzymes involving papain, actinidin and papaya peptidase II.
    Brocklehurst K; Carey PR; Lee HH; Salih E; Storer AC
    Biochem J; 1984 Nov; 223(3):649-57. PubMed ID: 6391467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding induces a cooperative conformational change in the 12S subunit of transcarboxylase: Raman crystallographic evidence.
    Zheng X; Rivera-Hainaj RE; Zheng Y; Pusztai-Carey M; Hall PR; Yee VC; Carey PR
    Biochemistry; 2002 Sep; 41(35):10741-6. PubMed ID: 12196011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectroscopic and kinetic consequences of a nitrogen ... sulphur enzyme-substrate contact in a series of dithioacylpapains.
    Tonge PJ; Gour-Salin B; Lachance P; Storer AC; Carey PR
    Biophys J; 1992 Jul; 63(1):191-6. PubMed ID: 1420866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online Raman spectroscopy for structural biology on beamline ID29 of the ESRF.
    von Stetten D; Giraud T; Bui S; Steiner RA; Fihman F; de Sanctis D; Royant A
    J Struct Biol; 2017 Nov; 200(2):124-127. PubMed ID: 29042242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infra-red and Raman spectroscopic studies of enzyme structure and function.
    Wharton CW
    Biochem J; 1986 Jan; 233(1):25-36. PubMed ID: 3513759
    [No Abstract]   [Full Text] [Related]  

  • 15. Modeling and spectroscopic studies of bisphosphonate-bone interactions. The Raman, NMR and crystallographic investigations of Ca-HEDP complexes.
    Cukrowski I; Popović L; Barnard W; Paul SO; van Rooyen PH; Liles DC
    Bone; 2007 Oct; 41(4):668-78. PubMed ID: 17644459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The specificity of actinidin and its relationship to the structure of the enzyme.
    Baker EN; Boland MJ; Calder PC; Hardman MJ
    Biochim Biophys Acta; 1980 Nov; 616(1):30-4. PubMed ID: 7002215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic studies of the structures, energetics, and bond distortions of substrates bound to enzymes.
    Deng H; Callender R
    Methods Enzymol; 1999; 308():176-201. PubMed ID: 10507005
    [No Abstract]   [Full Text] [Related]  

  • 18. Spectroscopic characterization of distortion in enzyme complexes.
    Carey PR
    Chem Rev; 2006 Aug; 106(8):3043-54. PubMed ID: 16895317
    [No Abstract]   [Full Text] [Related]  

  • 19. Understanding heme cavity structure of peroxidases: comparison of electronic absorption and resonance Raman spectra with crystallographic results.
    Smulevich G
    Biospectroscopy; 1998; 4(5 Suppl):S3-17. PubMed ID: 9787910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationships in papain and bromelain ligand interactions.
    Hansch C; Smith RN; Rockoff A; Calef DF; Jow PY; Fukunaga JY
    Arch Biochem Biophys; 1977 Oct; 183(2):383-92. PubMed ID: 921271
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.