These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 7104323)

  • 1. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment.
    Bohnensack R; Küster U; Letko G
    Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria.
    Wanders RJ; Groen AK; Van Roermund CW; Tager JM
    Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes.
    Gellerich FN; Bohnensack R; Kunz W
    Biochim Biophys Acta; 1983 Feb; 722(2):381-91. PubMed ID: 6301555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of mitochondrial oxidative phosphorylation.
    Kholodenko BN
    J Theor Biol; 1984 Mar; 107(2):179-88. PubMed ID: 6717037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate control of phosphorylation-coupled respiration by rat liver mitochondria.
    Davis EJ; Davis-Van Thienen WI
    Arch Biochem Biophys; 1984 Sep; 233(2):573-81. PubMed ID: 6486800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio.
    Küster U; Bohnensack R; Kunz W
    Biochim Biophys Acta; 1976 Aug; 440(2):391-402. PubMed ID: 952975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier.
    Devin A; Guérin B; Rigoulet M
    Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of mitochondrial respiration.
    Tager JM; Wanders RJ; Groen AK; Kunz W; Bohnensack R; Küster U; Letko G; Böhme G; Duszynski J; Wojtczak L
    FEBS Lett; 1983 Jan; 151(1):1-9. PubMed ID: 6337871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria.
    Schild L; Gellerich FN
    Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria.
    Baggetto L; Gautheron DC; Godinot C
    Arch Biochem Biophys; 1984 Aug; 232(2):670-8. PubMed ID: 6087735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol.
    Rigoulet M; Devin A; Avéret N; Vandais B; Guérin B
    Eur J Biochem; 1996 Oct; 241(1):280-5. PubMed ID: 8898917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of energy transformation of mitochondria. Analysis by a quantitative model.
    Bohnensack R
    Biochim Biophys Acta; 1981 Jan; 634(1):203-18. PubMed ID: 6451238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the contribution of various steps to the control of mitochondrial respiration.
    Groen AK; Wanders RJ; Westerhoff HV; van der Meer R; Tager JM
    J Biol Chem; 1982 Mar; 257(6):2754-7. PubMed ID: 7061448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the plasticizer di-(2-ethylhexyl)phthalate on oxidative phosphorylation in rat liver mitochondria: modification of the function of the adenine nucleotide translocator.
    Kora S; Sado M; Terada H
    J Pharmacobiodyn; 1988 Dec; 11(12):773-8. PubMed ID: 2855530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator.
    Bohnensack R
    J Bioenerg Biomembr; 1982 Feb; 14(1):45-61. PubMed ID: 6292176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator.
    Quentin E; Avéret N; Guérin B; Rigoulet M
    Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sigmoidal relation between mitochondrial respiration and log ([ATP]/[ADP])out under conditions of extramitochondrial ATP utilization. Implications for the control and thermodynamics of oxidative phosphorylation.
    Wanders RJ; Westerhoff HV
    Biochemistry; 1988 Oct; 27(20):7832-40. PubMed ID: 3207715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation.
    Wilson DF; Nelson D; Erecińska M
    FEBS Lett; 1982 Jul; 143(2):228-32. PubMed ID: 6288461
    [No Abstract]   [Full Text] [Related]  

  • 20. The function of the adenine nucleotide translocator in the control of oxidative phosphorylation.
    Bohnensack R; Gellerich FN; Schild L; Kunz W
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):182-4. PubMed ID: 2168208
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.