These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7104325)

  • 1. Effects of valinomycin on lymphocytes independent of potassium permeability.
    Negendank W; Shaller C
    Biochim Biophys Acta; 1982 Jun; 688(2):316-22. PubMed ID: 7104325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of metabolic inhibition on ion contents and sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1982 Mar; 110(3):291-9. PubMed ID: 6282900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro.
    Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M
    J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of potassium flux by valinomycin in embryonic chick heart.
    Carmeliet EE; Lieberman M
    Pflugers Arch; 1975 Jul; 358(3):243-57. PubMed ID: 1239004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of valinomycin on ion transport in bacterial cells and on bacterial growth.
    Ryabova ID; Gorneva GA; Ovchinnikov YA
    Biochim Biophys Acta; 1975 Aug; 401(1):109-18. PubMed ID: 807259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphocyte membrane potential assessed with fluorescent probes.
    Rink TJ; Montecucco C; Hesketh TR; Tsien RY
    Biochim Biophys Acta; 1980; 595(1):15-30. PubMed ID: 6153065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A potassium ionophore (valinomycin) inhibits lymphocyte proliferation by its effects on the cell membrane.
    Daniele RP; Holian SK
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3599-602. PubMed ID: 1068473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium transport in opossum kidney cells: effects of Na-selective and K-selective ionizable cryptands, and of valinomycin, FCCP and nystatin.
    Loiseau A; Leroy C; Castaing M
    Biochim Biophys Acta; 1997 Nov; 1330(1):39-49. PubMed ID: 9375811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Clin Invest; 1979 Sep; 64(3):834-41. PubMed ID: 224078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of the ionophore antibiotic valinomycin on the lymphocyte blast-transformation reaction induced by phytohemagglutinin].
    Astashkin EI; Kovaleva VL; Kovalev IE
    Tsitologiia; 1977 Mar; 19(3):361-6. PubMed ID: 883032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles.
    Singh AP; Nicholls P
    Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of the change in erythrocyte osmotic resistance in rats exposed to valinomycin: the features seen in spontaneous hypertension].
    Orlov SN; Pokudin NI
    Biull Eksp Biol Med; 1986 Oct; 102(10):392-4. PubMed ID: 3768499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of calmodulin blockers on membrane potential, potassium permeability and lymphocyte mitogenesis].
    Gukovskaia AS; Zinchenko VP; Astashkin EI
    Biokhimiia; 1985 May; 50(5):786-94. PubMed ID: 3924125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energization of alanine transport in isolated rat hepatocytes. Electrogenic Na+-alanine co-transport leading to increased K+ permeability.
    Kristensen LO
    J Biol Chem; 1980 Jun; 255(11):5236-43. PubMed ID: 6154702
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin.
    Segel GB; Lichtman MA
    J Clin Invest; 1976 Dec; 58(6):1358-69. PubMed ID: 993349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Concanavalin A induced changes of lymphocyte p-nitrophenylphosphatase (author's transl)].
    Averdunk R; Müller J; Wenzel B
    Hoppe Seylers Z Physiol Chem; 1976 May; 357(5):673-81. PubMed ID: 184027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.