These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7104325)

  • 21. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes.
    Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC
    Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triggering of lymphocyte capping appears not to require changes in potential or ion fluxes across the plasma membrane.
    Montecucco C; Rink TJ; Pozzan T; Metcalfe JC
    Biochim Biophys Acta; 1980; 595(1):65-70. PubMed ID: 6985571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of valinomycin on hexose transport and cellular ATP pools in mouse fibroblasts.
    Yamanishi K
    J Cell Physiol; 1984 May; 119(2):163-71. PubMed ID: 6715414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of magnesium with the sodium pump of the human red cell.
    Sachs JR
    J Physiol; 1988 Jun; 400():575-91. PubMed ID: 2843641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valinomycin inhibition of the inward slow current of cardiac muscle.
    Schneider JA; Shigenobu K; Sperelakis N
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():33-52. PubMed ID: 1257579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of (DL)-propranolol and Ca2+ on membrane potential and amino acid transport in Ehrlich ascites tumor cells.
    Pershadsingh HA; Johnstone RM; Laris PC
    Biochim Biophys Acta; 1978 May; 509(2):360-73. PubMed ID: 26402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of concanavalin A on membrane-bound enzymes from mouse lymphocytes.
    Pommier G; Ripert G; Azoulay E; Depieds R
    Biochim Biophys Acta; 1975 May; 389(3):483-94. PubMed ID: 123786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstituted amiloride-inhibited sodium transporter from rabbit kidney medulla is responsible for Na+-H+ exchange.
    LaBelle EF
    Biochim Biophys Acta; 1984 Feb; 770(1):79-92. PubMed ID: 6320883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphate inhibition of the human red cell sodium pump: simultaneous binding of adenosine triphosphate and phosphate.
    Sachs JR
    J Physiol; 1988 Jun; 400():545-74. PubMed ID: 2843640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of valinomycin on human peripheral blood lymphocytes.
    Schultz JC; Shahidi NT
    Biochem Pharmacol; 1984 Jul; 33(13):2151-4. PubMed ID: 6204649
    [No Abstract]   [Full Text] [Related]  

  • 33. The effects of ionophore A23187 and concanavalin A on the membrane potential of human peripheral blood lymphocytes and rat thymocytes.
    Gukovskaya AS; Zinchenko VP
    Biochim Biophys Acta; 1985 May; 815(3):433-40. PubMed ID: 3922416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts.
    Eisner DA; Richards DE
    J Physiol; 1983 Feb; 335():495-506. PubMed ID: 6875890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potassium-stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles.
    Lee HC; Breitbart H; Berman M; Forte JG
    Biochim Biophys Acta; 1979 May; 553(1):107-31. PubMed ID: 36910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal potassium stimulates the sodium-potassium pump by increasing cell ATP concentration.
    Sachs JR
    J Physiol; 1981; 319():515-28. PubMed ID: 7320924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells.
    Flatman PW; Lew VL
    J Physiol; 1981 Jun; 315():421-46. PubMed ID: 6796677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The apparent discrepancy of ouabain inhibition of cation transport and of lymphocyte proliferation is explained by time-dependency of ouabain binding.
    Segel GB; Lichtman MA
    J Cell Physiol; 1980 Jul; 104(1):21-6. PubMed ID: 7440642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of quinine, a blocker of Ca2+-activated K+-channels, on lymphocyte activation by mitogens].
    Riabichenko VV; Gukovskaia AS; Nikolaeva IS; Astashkin EI
    Tsitologiia; 1986 Jan; 28(1):91-5. PubMed ID: 2420047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.
    Karlish SJ; Pick U
    J Physiol; 1981 Mar; 312():505-29. PubMed ID: 6267267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.