BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7104378)

  • 1. Reduction of beta-oxidation capacity of rat liver mitochondria by feeding orotic acid.
    Miyazawa S; Furuta S; Hashimoto T
    Biochim Biophys Acta; 1982 Jun; 711(3):494-502. PubMed ID: 7104378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Amanitin inhibits the oxidation of long chain fatty acids in mouse liver.
    Hashimoto T; Miyazawa S; Gunarso D; Furuta S
    J Biochem; 1981 Aug; 90(2):415-21. PubMed ID: 7197673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal responses to dietary diacylglycerol of hepatic enzymes of fatty acid synthesis and oxidation in the rat.
    Murata M; Ide T; Hara K
    Br J Nutr; 1997 Jan; 77(1):107-121. PubMed ID: 9059234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation.
    Hashimoto F; Hayashi H
    Biochim Biophys Acta; 1987 Sep; 921(1):142-50. PubMed ID: 2887206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pantethine and its metabolites on fatty acid oxidation in rat liver mitochondria.
    Morisaki N; Matsuoka N; Saito Y; Kumagai A
    Tohoku J Exp Med; 1983 Sep; 141(1):33-9. PubMed ID: 6636147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiropentaneacetic acid as a specific inhibitor of medium-chain acyl-CoA dehydrogenase.
    Tserng KY; Jin SJ; Hoppel CL
    Biochemistry; 1991 Nov; 30(44):10755-60. PubMed ID: 1931995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats.
    Kibayashi M; Nagao M; Chiba S
    Pediatr Int; 1999 Feb; 41(1):52-60. PubMed ID: 10200137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of acyl-CoA dehydrogenases and electron transfer flavoprotein and their roles in fatty acid oxidation in rat liver mitochondria.
    Furuta S; Miyazawa S; Hashimoto T
    J Biochem; 1981 Dec; 90(6):1751-6. PubMed ID: 7334009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of fatty acid transport protein and mitochondrial and peroxisomal beta-oxidation gene expression by fatty acids in developing rats.
    Ouali F; Djouadi F; Merlet-BĂ©nichou C; Riveau B; Bastin J
    Pediatr Res; 2000 Nov; 48(5):691-6. PubMed ID: 11044493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the activities of the enzymes of hepatic fatty acid oxidation during development of the rat.
    Foster PC; Bailey E
    Biochem J; 1976 Jan; 154(1):49-56. PubMed ID: 6020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Bromo-2-octenoic acid specifically inactivates 3-ketoacyl-CoA thiolase and thereby fatty acid oxidation in rat liver mitochondria.
    Li JX; Schulz H
    Biochemistry; 1988 Aug; 27(16):5995-6000. PubMed ID: 3191104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyl-CoA dehydrogenase activity in the riboflavin-deficient rat. Effects of starvation.
    Ross NS; Hoppel CL
    Biochem J; 1987 Jun; 244(2):387-91. PubMed ID: 3663132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver.
    Sirato-Yasumoto S; Katsuta M; Okuyama Y; Takahashi Y; Ide T
    J Agric Food Chem; 2001 May; 49(5):2647-51. PubMed ID: 11368649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase.
    Yang SY; He XY; Schulz H
    J Biol Chem; 1987 Sep; 262(27):13027-32. PubMed ID: 3654601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
    Malloy VL; Perrone CE; Mattocks DA; Ables GP; Caliendo NS; Orentreich DS; Orentreich N
    Metabolism; 2013 Nov; 62(11):1651-61. PubMed ID: 23928105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboflavin deficiency and beta-oxidation systems in rat liver.
    Sakurai T; Miyazawa S; Furuta S; Hashimoto T
    Lipids; 1982 Sep; 17(9):598-604. PubMed ID: 7144448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of mitochondrial fatty acid oxidation in pentenoic acid-induced fatty liver. A possible model for Reye's syndrome.
    Thayer WS
    Biochem Pharmacol; 1984 Apr; 33(8):1187-94. PubMed ID: 6712730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of clofibric acid and tiadenol on cytosolic long-chain acyl-CoA hydrolase and peroxisomal beta-oxidation in liver and extrahepatic tissues of rats.
    Katoh H; Kawashima Y; Watanuki H; Kozuka H; Isono H
    Biochim Biophys Acta; 1987 Jul; 920(2):171-9. PubMed ID: 2886154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of enzymes involved in fatty acid beta-oxidation in Pseudomonas fragi B-0771 cells grown in media supplemented with fatty acid.
    Sato S; Imamura S; Ozeki Y; Kawaguchi A
    J Biochem; 1992 Jan; 111(1):16-9. PubMed ID: 1607360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.