These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7104451)

  • 1. Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes.
    Kakitani T; Honig B; Crofts AR
    Biophys J; 1982 Jul; 39(1):57-63. PubMed ID: 7104451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electric fields on the absorption spectrum of dye molecules in lipid layers. V. Refined analysis of the field-indicating absorption changes in photosynthetic membranes by comparison with electrochromic measurements in vitro.
    Reich R; Scheerer R; Sewe KU; Witt HT
    Biochim Biophys Acta; 1976 Nov; 449(2):285-94. PubMed ID: 990296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    J Phys Chem B; 2008 Aug; 112(31):9467-75. PubMed ID: 18613723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric dichroism in the purple membrane of Halobacterium halobium.
    Druckmann S; Ottolenghi M
    Biophys J; 1981 Feb; 33(2):263-8. PubMed ID: 6784783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigment-protein complexes of purple photosynthetic bacteria: an overview.
    Thornber JP; Cogdell RJ; Pierson BK; Seftor RE
    J Cell Biochem; 1983; 23(1-4):159-69. PubMed ID: 6373795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin.
    Spudich JL; McCain DA; Nakanishi K; Okabe M; Shimizu N; Rodman H; Honig B; Bogomolni RA
    Biophys J; 1986 Feb; 49(2):479-83. PubMed ID: 2937462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochromic behaviour of carotenoid molecules in nerve cell membranes: a resonance Raman study.
    Paschenko VZ; Vershinin AO; Churin AA
    J Photochem Photobiol B; 1993 May; 18(2-3):127-30. PubMed ID: 8350180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Conformational regulation of functional activity of photosynthetic membranes of purple bacteria].
    Berg AI; Noks PP; Kononenko AA; Frolov EN; Khrymova IN
    Mol Biol (Mosk); 1979; 13(1):81-9. PubMed ID: 111034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photochemical transformations of bacteriorhodopsin].
    Balashov SP; Litvin FF
    Biofizika; 1981; 26(3):557-70. PubMed ID: 7260171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light energy transduction by the purple membrane of halophilic bacteria.
    Stoeckenius W
    Fed Proc; 1977 May; 36(6):1797-8. PubMed ID: 852610
    [No Abstract]   [Full Text] [Related]  

  • 11. [Effect of temperature and humidity on the electroinduced bathochromic shift in the absorption band of bacteriorhodopsin (Br 570)].
    Lukashev EP; Vozari E; Kononenko AA; Rubin AB
    Biofizika; 1980; 25(2):351-3. PubMed ID: 7370353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial electric polarizability of purple membranes in solution.
    Todorov G; Sokerov S; Stoylov SP
    Biophys J; 1982 Oct; 40(1):1-5. PubMed ID: 7139031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic electric properties of purple membrane and their change during the photoreaction cycle.
    Kimura Y; Fujiwara M; Ikegami A
    Biophys J; 1984 Mar; 45(3):615-25. PubMed ID: 6713073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad.
    Pillai S; Ravensbergen J; Antoniuk-Pablant A; Sherman BD; van Grondelle R; Frese RN; Moore TA; Gust D; Moore AL; Kennis JT
    Phys Chem Chem Phys; 2013 Apr; 15(13):4775-84. PubMed ID: 23435870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemistry of two rhodopsinlike pigments in bacteriorhodopsin-free mutant of Halobacterium halobium.
    Hazemoto N; Kamo N; Terayama Y; Kobatake Y; Tsuda M
    Biophys J; 1983 Oct; 44(1):59-64. PubMed ID: 6626679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the light-driven proton movement in model membranes containing bacteriorhodopsin.
    Rayfield GW
    Biophys J; 1982 Apr; 38(1):79-84. PubMed ID: 7074202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinetics of primary photocycle stages of bacteriorhodopsin at low temperatures].
    Zubov BV; Sulikov NA; Chernavskaia NM; Chernavskiĭ DS; Chizhov IV
    Biofizika; 1982; 27(3):357-61. PubMed ID: 7093312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochromic absorbance changes in spinach chloroplasts induced by an external electrical field.
    de Grooth BG; van Gorkom HJ; Meiburg RF
    Biochim Biophys Acta; 1980 Feb; 589(2):299-314. PubMed ID: 7356987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films.
    Muccio DD; Cassim JY
    Biophys J; 1979 Jun; 26(3):427-40. PubMed ID: 262427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional in situ evaluation of photosynthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis PCC6803.
    Schäfer L; Vioque A; Sandmann G
    J Photochem Photobiol B; 2005 Mar; 78(3):195-201. PubMed ID: 15708516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.