These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Influence of temperature on rheology of human erythrocytes. Sung KL; Chien S Chin J Physiol; 1992; 35(2):81-94. PubMed ID: 1451575 [TBL] [Abstract][Full Text] [Related]
5. What is red cell deformability? Schmid-Schönbein H; Gaehtgens P Scand J Clin Lab Invest Suppl; 1981; 156():13-26. PubMed ID: 6948373 [TBL] [Abstract][Full Text] [Related]
6. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation. Dong C; Chadwick RS; Schechter AN Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913 [TBL] [Abstract][Full Text] [Related]
7. Viscoelastic properties of leukocytes. Chien S; Schmid-Schönbein GW; Sung KL; Schmalzer EA; Skalak R Kroc Found Ser; 1984; 16():19-51. PubMed ID: 6371192 [TBL] [Abstract][Full Text] [Related]
8. Structure and deformation properties of red blood cells: concepts and quantitative methods. Evans EA Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613 [TBL] [Abstract][Full Text] [Related]
9. Deformation of red blood cells and the viscoelastic properties of a concentrated red cell suspension. Murata T Biorheology; 1984; 21(3):379-91. PubMed ID: 6466807 [TBL] [Abstract][Full Text] [Related]
10. Numerical approach to the motion of a red blood cell in Couette flow. Sugihara M; Niimi H Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286 [TBL] [Abstract][Full Text] [Related]
11. A continuum model for a red blood cell transformation: sphere to crenated sphere. Landman KA J Theor Biol; 1984 Feb; 106(3):329-51. PubMed ID: 6717034 [TBL] [Abstract][Full Text] [Related]
12. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Chien S; Sung KL; Skalak R; Usami S; Tözeren A Biophys J; 1978 Nov; 24(2):463-87. PubMed ID: 728524 [TBL] [Abstract][Full Text] [Related]
13. Rheology of leukocytes. Chien S; Sung KL; Schmid-Schönbein GW; Skalak R; Schmalzer EA; Usami S Ann N Y Acad Sci; 1987; 516():333-47. PubMed ID: 3439735 [TBL] [Abstract][Full Text] [Related]
14. Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties. Gómez F; Silva LS; Araújo GRS; Frases S; Pinheiro AAS; Agero U; Pontes B; Viana NB Phys Rev E; 2020 Jun; 101(6-1):062403. PubMed ID: 32688571 [TBL] [Abstract][Full Text] [Related]
15. Viscoelasticity of packed erythrocyte suspensions subjected to low amplitude oscillatory deformation. Drasler WJ; Smith CM; Keller KH Biophys J; 1987 Sep; 52(3):357-65. PubMed ID: 3651555 [TBL] [Abstract][Full Text] [Related]
16. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Bischoff JE; Arruda EM; Grosh K Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837 [TBL] [Abstract][Full Text] [Related]
17. Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition. Thekkethil N; Köry J; Guo M; Stewart PS; Hill NA; Luo X Biomech Model Mechanobiol; 2024 Oct; 23(5):1551-1569. PubMed ID: 38976113 [TBL] [Abstract][Full Text] [Related]
19. Theory of non-Newtonian viscosity of red blood cell suspension: effect of red cell deformation. Murata T Biorheology; 1983; 20(5):471-83. PubMed ID: 6677273 [TBL] [Abstract][Full Text] [Related]
20. Alterations by leukocytes of erythrocyte flow in microchannels. La Celle PL Blood Cells; 1986; 12(1):179-89. PubMed ID: 3466657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]