BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7105183)

  • 1. The cytoplast: a unit structure in chromatophores.
    Porter KR; McNiven MA
    Cell; 1982 May; 29(1):23-32. PubMed ID: 7105183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy.
    Byers HR; Porter KR
    J Cell Biol; 1977 Nov; 75(2 Pt 1):541-58. PubMed ID: 264122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that MAP-2 may be involved in pigment granule transport in squirrel fish erythrophores.
    Stearns ME; Binder LI
    Cell Motil Cytoskeleton; 1987; 7(3):221-34. PubMed ID: 3297355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements.
    Luby KJ; Porter KR
    Cell; 1980 Aug; 21(1):13-23. PubMed ID: 7407908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microtubules in cell shape and pigment distribution in spreading erythrophores.
    Ochs RL
    Eur J Cell Biol; 1982 Oct; 28(2):226-32. PubMed ID: 7173222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of microtubules in pigment translocation in goldfish xanthophores.
    Chen JS; Wang SM
    Arch Histol Cytol; 1993 Dec; 56(5):451-8. PubMed ID: 8129980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrest of pigment granule motion in erythrophores by quick-freezing.
    Ip W; Murphy DB; Heuser JE
    J Ultrastruct Res; 1984 Feb; 86(2):162-75. PubMed ID: 6737564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microtubules in the movement of pigment granules in teleost melanophores.
    Murphy DB; Tilney LG
    J Cell Biol; 1974 Jun; 61(3):757-79. PubMed ID: 4836391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores.
    Murphy DB
    Ann N Y Acad Sci; 1975 Jun; 253():692-701. PubMed ID: 1056758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B; Adler R; O'Connor P
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized pigment granule transport occurs in the absence of microtubules in squirrelfish erythrophores: studies of the effects of estramustine.
    Stearns ME; Wang M
    J Cell Sci; 1987 May; 87 ( Pt 4)():565-80. PubMed ID: 3654792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the role of microtubules and actin in erythrophore intracellular motility.
    Beckerle MC; Porter KR
    J Cell Biol; 1983 Feb; 96(2):354-62. PubMed ID: 6682106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediate filaments in the cytoskeletons of fish chromatophores.
    Murphy DB; Grasser WA
    J Cell Sci; 1984 Mar; 66():353-66. PubMed ID: 6540271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytomatrix regulates "resolute" transport in erythrophores.
    Stearns ME; Binder LI; Wang M
    Ann N Y Acad Sci; 1986; 466():895-908. PubMed ID: 3460462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-centring activity of cytoplasm.
    Rodionov VI; Borisy GG
    Nature; 1997 Mar; 386(6621):170-3. PubMed ID: 9062188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium.
    Luby-Phelps K; Porter KR
    Cell; 1982 Jun; 29(2):441-50. PubMed ID: 6811138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus.
    Weber W; Gras H
    Cell Tissue Res; 1980; 206(1):21-33. PubMed ID: 7357591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron microscopy of two types of reflecting chromatophores (iridophores and leucophores) in the guppy, Lebistes reticulatus Peters.
    Takeuchi IK
    Cell Tissue Res; 1976 Oct; 173(1):17-27. PubMed ID: 991232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores.
    Obika M; Turner WA; Negishi S; Menter DG; Tchen TT; Taylor JD
    J Exp Zool; 1978 Jul; 205(1):95-110. PubMed ID: 670923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.