These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 7106141)

  • 1. Correlations between breaking load and CT absorption values of vertebral bodies.
    Brassow F; Crone-Münzebrock W; Weh L; Kranz R; Eggers-Stroeder G
    Eur J Radiol; 1982 May; 2(2):99-101. PubMed ID: 7106141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [An evaluation of bone mineral mass and trabecular distribution on cross sections of thoracic and lumbar vertebral bodies].
    Matsui M
    Nihon Seikeigeka Gakkai Zasshi; 1991 Jan; 65(1):9-17. PubMed ID: 2040827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Computer tomographic densitometry of the normal vertebral body spongiosa].
    Robotti GC; Fritschy P; Triller J
    Computertomographie; 1983 Sep; 3(3):124-7. PubMed ID: 6640581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical consequences of an isolated overload on the human vertebral body.
    Kopperdahl DL; Pearlman JL; Keaveny TM
    J Orthop Res; 2000 Sep; 18(5):685-90. PubMed ID: 11117287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography.
    Lang SM; Moyle DD; Berg EW; Detorie N; Gilpin AT; Pappas NJ; Reynolds JC; Tkacik M; Waldron RL
    J Bone Joint Surg Am; 1988 Dec; 70(10):1531-8. PubMed ID: 3198678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men.
    Eckstein F; Fischbeck M; Kuhn V; Link TM; Priemel M; Lochmüller EM
    Bone; 2004 Aug; 35(2):364-74. PubMed ID: 15268885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of canine vertebral bone architecture in computed tomography.
    Cheon B; Park S; Lee SK; Park JG; Cho KO; Choi J
    J Vet Sci; 2018 Jan; 19(1):145-150. PubMed ID: 28693309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in bone mineral density in Th12 to L5 vertebrae in female patients with osteoporosis].
    Wendlová J
    Vnitr Lek; 2000 Aug; 46(8):460-4. PubMed ID: 11048510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed tomography of the spine and spinal cord.
    Lee BC; Kazam E; Newman AD
    Radiology; 1978 Jul; 128(1):95-102. PubMed ID: 663231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density.
    McCubbrey DA; Cody DD; Peterson EL; Kuhn JL; Flynn MJ; Goldstein SA
    J Biomech; 1995 Aug; 28(8):891-9. PubMed ID: 7673257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental research on the quantitative computed tomographic prediction of the compressive strength of the thoracolumbar vertebrae].
    Biggemann M; Hilweg D; Brinckmann P
    Rofo; 1989 Sep; 151(3):322-5. PubMed ID: 2552526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiffening effects of cortical bone on vertebral cancellous bone in situ.
    Bryce R; Aspden RM; Wytch R
    Spine (Phila Pa 1976); 1995 May; 20(9):999-1003. PubMed ID: 7631248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducible reference frame for in vitro testing of the human vertebrae.
    Danesi V; Zani L; Scheele A; Berra F; Cristofolini L
    J Biomech; 2014 Jan; 47(1):313-8. PubMed ID: 24200339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests.
    Haidekker MA; Andresen R; Werner HJ
    Osteoporos Int; 1999; 9(5):433-40. PubMed ID: 10550463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computed tomography of bone fragments in the spinal canal. An experimental study.
    Lindahl S; Willen J; Irstam L
    Spine (Phila Pa 1976); 1983 Mar; 8(2):181-6. PubMed ID: 6857389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress distribution and bone density in the lumbar spine.
    Dai L; Cheng P; Zhang W; Xu Y; Tu K
    Chin Med Sci J; 1992 Jun; 7(2):105-7. PubMed ID: 1450391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Measuring vertebral body height in monitoring osteoporosis].
    Schmidt CW
    Z Alternsforsch; 1987; 42(1):41-3. PubMed ID: 3577222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the intervertebral disc on stress distribution of the thoracolumbar vertebrae under destructive load.
    Liu L; Pei F; Song Y; Zou L; Zhang C; Zhou Z
    Chin J Traumatol; 2002 Oct; 5(5):279-83. PubMed ID: 12241638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.