These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7106360)

  • 1. Role of the state of reduction of the NAD system on the regulation of hepatic protein synthesis in the rat in vivo.
    Garcia-Esteller SC; Robles SS; Martin-Requero A; Ayuso-Parrilla MS; Parrilla R
    Int J Biochem; 1982; 14(7):615-20. PubMed ID: 7106360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelation between gluconeogenesis and hepatic protein synthesis.
    Ayuso MS; Vega P; Manchón CG; Parrilla R
    Biochim Biophys Acta; 1986 Aug; 883(1):33-40. PubMed ID: 3015233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of octanoate and oleate on energy metabolism in the perfused rat liver.
    Debeer LJ; Mannaerts G; De Schepper PJ
    Eur J Biochem; 1974 Sep; 47(3):591-600. PubMed ID: 4434997
    [No Abstract]   [Full Text] [Related]  

  • 5. Energetics and stoichiometry of oxidative phosphorylation from NADH to cytochrome c in isolated rat liver mitochondria.
    Forman NG; Wilson DF
    J Biol Chem; 1982 Nov; 257(21):12908-15. PubMed ID: 6290486
    [No Abstract]   [Full Text] [Related]  

  • 6. Control of hepatic gluconeogenesis: role of fatty acid oxidation.
    González-Manchón C; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1989 May; 271(1):1-9. PubMed ID: 2712567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.
    Schönfeld P; Bohnensack R
    Biomed Biochim Acta; 1991; 50(7):841-9. PubMed ID: 1759963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a secondary pathway of ethanol metabolism by differences in redox state: a story of the failure to arrest the Krebs cycle for drunkenness.
    Veech RL; Felver ME; Lakshmanan MR; Huang MT; Wolf S
    Curr Top Cell Regul; 1981; 18():151-79. PubMed ID: 7023855
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of ATP/ADP ratio in the control of hepatic gluconeogenesis during the early neonatal period.
    Cuezva JM; Fernández E; Valcarce C; Medina JM
    Biochim Biophys Acta; 1983 Sep; 759(3):292-5. PubMed ID: 6882806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the hepatocellular redox state in the hepatic triglyceride accumulation following acute ethanol administration.
    Ryle PR; Chakraborty J; Thomson AD
    Biochem Pharmacol; 1986 Sep; 35(18):3159-64. PubMed ID: 3753521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of free fatty acids on hepatic adenine nucleotide content and oxidative metabolism.
    Mannaerts G; Debeer LJ; De Schepper PJ
    Arch Int Physiol Biochim; 1974; 82(2):357-8. PubMed ID: 4135881
    [No Abstract]   [Full Text] [Related]  

  • 12. Altered acetaminophen disposition in fed and food-deprived rats after acute ethanol administration.
    Minnigh MB; Zemaitis MA
    Drug Metab Dispos; 1982; 10(2):183-8. PubMed ID: 6124407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of the hepatocellular redox state and the hepatic acetaldehyde concentration in determining the ethanol elimination rate in fasted rats.
    Ryle PR; Chakraborty J; Thomson AD
    Biochem Pharmacol; 1985 Oct; 34(19):3577-83. PubMed ID: 2932116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of branched-chain amino acids in skeletal muscle and liver of rat. Effects of octanoate and energy state.
    Spydevold O; Hokland B
    Biochim Biophys Acta; 1981 Sep; 676(3):279-88. PubMed ID: 6793084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Correlation between [NAD+]:[NADH] and the "phosphate potential" in liver cytoplasm of developing chicken embryos].
    Ermolaeva LP
    Biokhimiia; 1981 Jun; 46(6):1127-32. PubMed ID: 7260198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo effects of lipopolysaccharide on hepatic free-NAD(P)(+)-linked redox states and cytosolic phosphorylation potential in 48-hour-fasted rats.
    Gitomer WL; Miller BC; Cottam GL
    Metabolism; 1995 Sep; 44(9):1170-4. PubMed ID: 7666791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular redox state and control of gluconeogenesis in perfused chicken liver.
    Sugano T; Shiota M; Khono H; Shimada M
    J Biochem; 1982 Jun; 91(6):1917-29. PubMed ID: 7118853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O2 uptake in periportal and pericentral regions of liver lobule in perfused liver.
    Matsumura T; Kauffman FC; Meren H; Thurman RG
    Am J Physiol; 1986 Jun; 250(6 Pt 1):G800-5. PubMed ID: 3717341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.