These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7106362)

  • 1. Free-radical damage to lipids, amino acids, carbohydrates and nucleic acids determined by thiobarbituric acid reactivity.
    Gutteridge JM
    Int J Biochem; 1982; 14(7):649-53. PubMed ID: 7106362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators.
    Gutteridge JM; Quinlan GJ
    J Appl Biochem; 1983; 5(4-5):293-9. PubMed ID: 6679543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates.
    Gutteridge JM
    FEBS Lett; 1981 Jun; 128(2):343-6. PubMed ID: 7262325
    [No Abstract]   [Full Text] [Related]  

  • 4. Butylated hydroxytoluene addition improves the thiobarbituric acid assay for malonaldehyde from chicken plasma fat.
    Pikul J; Leszczynski DE
    Nahrung; 1986; 30(7):673-8. PubMed ID: 3773981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiobarbituric acid-reactive malondialdehyde formation during superoxide-dependent, iron-catalyzed lipid peroxidation: influence of peroxidation conditions.
    Janero DR; Burghardt B
    Lipids; 1989 Feb; 24(2):125-31. PubMed ID: 2547130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.
    Janero DR
    Free Radic Biol Med; 1990; 9(6):515-40. PubMed ID: 2079232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid.
    Liu J; Yeo HC; Doniger SJ; Ames BN
    Anal Biochem; 1997 Feb; 245(2):161-6. PubMed ID: 9056207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thiobarbituric acid (TBA) reaction in foods: a review.
    Guillén-Sans R; Guzmán-Chozas M
    Crit Rev Food Sci Nutr; 1998 May; 38(4):315-30. PubMed ID: 9626489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cardiac membrane phospholipid peroxidation kinetics as malondialdehyde: nonspecificity of thiobarbituric acid-reactivity.
    Janero DR; Burghardt B
    Lipids; 1988 May; 23(5):452-8. PubMed ID: 3412125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malondialdehyde contents in infant milk formulas.
    Cesa S
    J Agric Food Chem; 2004 Apr; 52(7):2119-22. PubMed ID: 15053561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of thiobarbituric acid-reactive substances in oxidized lipids by high-performance liquid chromatography with a postcolumn reaction system.
    Yoden K; Iio T
    Anal Biochem; 1989 Oct; 182(1):116-20. PubMed ID: 2604036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides.
    Wade CR; van Rij AM
    Life Sci; 1988; 43(13):1085-93. PubMed ID: 3172976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods.
    Papastergiadis A; Mubiru E; Van Langenhove H; De Meulenaer B
    J Agric Food Chem; 2012 Sep; 60(38):9589-94. PubMed ID: 22950760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-dependent free radical damage to DNA and deoxyribose. Separation of TBA-reactive intermediates.
    Gutteridge JM; Toeg D
    Int J Biochem; 1982; 14(10):891-3. PubMed ID: 6290280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoxidation of polyunsaturated fatty acids: II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides.
    Pryor WA; Stanley JP; Blair E
    Lipids; 1976 May; 11(5):370-9. PubMed ID: 1271974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging properties of metronidazole on free oxygen radicals in a skin lipid model system.
    Narayanan S; Hünerbein A; Getie M; Jäckel A; Neubert RH
    J Pharm Pharmacol; 2007 Aug; 59(8):1125-30. PubMed ID: 17725855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship among malondialdehyde, TBA-reactive substances, and tocopherols in the oxidation of rapeseed oil.
    Kishida E; Oribe M; Kojo S
    J Nutr Sci Vitaminol (Tokyo); 1990 Dec; 36(6):619-23. PubMed ID: 2097332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of malondialdehyde as the TBA-reactant formed by bleomycin-iron free radical damage to DNA.
    Gutteridge JM
    FEBS Lett; 1979 Sep; 105(2):278-82. PubMed ID: 90623
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials.
    Draper HH; Squires EJ; Mahmoodi H; Wu J; Agarwal S; Hadley M
    Free Radic Biol Med; 1993 Oct; 15(4):353-63. PubMed ID: 8225017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV-C irradiation-induced peroxidative degradation of microsomal fatty acids and proteins: protection by an extract of Ginkgo biloba (EGb 761).
    Dumont E; Petit E; Tarrade T; Nouvelot A
    Free Radic Biol Med; 1992 Sep; 13(3):197-203. PubMed ID: 1505777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.