These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7107418)

  • 1. Thermal distribution of magnetic-loop induction hyperthermia in phantoms and animals: effect of the living state and velocity of heating.
    Storm FK; Harrison WH; Elliott RS; Silberman AW; Morton DL
    Int J Radiat Oncol Biol Phys; 1982 May; 8(5):865-71. PubMed ID: 7107418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heating patterns induced by a 13.56 MHz radiofrequency generator in large phantoms and pig abdomen and thorax.
    Paliwal BR; Gibbs FA; Wiley AL
    Int J Radiat Oncol Biol Phys; 1982 May; 8(5):857-64. PubMed ID: 7107421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial microwave hyperthermia in a canine brain model.
    Sneed PK; Matsumoto K; Stauffer PR; Fike JR; Smith V; Gutin PH
    Int J Radiat Oncol Biol Phys; 1986 Oct; 12(10):1887-97. PubMed ID: 3759542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal energy deposition from a single-loop rf whole-body applicator.
    Zwicker RD; Sternick ES
    Med Phys; 1983; 10(1):104-8. PubMed ID: 6843507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability of heating patterns in animals by magnetic induction hyperthermia.
    Storm FK; Christensen DA; Olch AJ; Silberman AW; Roe DJ; Harrison WH; Elliott RS; Morton DL
    J Surg Oncol; 1985 Jun; 29(2):82-8. PubMed ID: 4079390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heating patterns produced by 434 MHz erbotherm UHF 69.
    Paliwal BR; Cardozo C; Jafari F; Hanson J; Caldwell W
    Radiology; 1980 May; 135(2):511-2. PubMed ID: 7367648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal tissue and solid tumor effects of hyperthermia in animal models and clinical trials.
    Storm FK; Harrison WH; Elliott RS; Morton DL
    Cancer Res; 1979 Jun; 39(6 Pt 2):2245-51. PubMed ID: 445424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional hyperthermia by magnetic induction in a beagle dog model: analysis of thermal dosimetry.
    Oleson JR; Assaad A; Dewhirst MW; DeYoung DW; Grochowski KJ; Sim DA
    Radiat Res; 1984 Jun; 98(3):445-55. PubMed ID: 6729045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical radiofrequency hyperthermia: a review.
    Storm FK; Morton DL; Kaiser LR; Harrison WH; Elliott RS; Weisenburger TH; Parker RG; Haskell CM
    Natl Cancer Inst Monogr; 1982 Jun; 61():343-50. PubMed ID: 7177184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considerations of radiofrequency induction heating for localised hyperthermia.
    Hand JW; Ledda JL; Evans NT
    Phys Med Biol; 1982 Jan; 27(1):1-16. PubMed ID: 7071131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Present clinical status of hyperthermia associated with radiotherapy (author's transl)].
    Jaulerry C; Bataini JP; Brunin F; Gaboriaud G
    Bull Cancer; 1981; 68(3):261-7. PubMed ID: 7039730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of a dispersive ground electrode with a loosely wound helical coil for interstitial radiofrequency thermal therapy.
    McCann C; Sherar MD
    Phys Med Biol; 2006 Aug; 51(15):3851-63. PubMed ID: 16861785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocused or focused ultrasound.
    Lele PP; Parker KJ
    Br J Cancer Suppl; 1982 Mar; 5():108-21. PubMed ID: 6950746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel loosely wound helical coil for interstitial radiofrequency thermal therapy.
    McCann C; Sherar MD
    Phys Med Biol; 2006 Aug; 51(15):3835-50. PubMed ID: 16861784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermic therapy for human neoplasms: thermal death time.
    Storm FK; Harrison WH; Elliott RS; Morton DL
    Cancer; 1980 Oct; 46(8):1849-54. PubMed ID: 7427887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal power deposition patterns for ideal high temperature therapy/hyperthermia treatments.
    Cheng KS; Roemer RB
    Int J Hyperthermia; 2004 Feb; 20(1):57-72. PubMed ID: 14612314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of a small microwave (2450 MHz) diathermy applicator as suitable for hyperthermia.
    Conway J
    Phys Med Biol; 1983 Mar; 28(3):249-56. PubMed ID: 6844403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A technique for localized heating in tissue: an adjunct to tumor therapy.
    Doss JD; McCabe CW
    Med Instrum; 1976; 10(1):16-21. PubMed ID: 1250180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.