BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7107593)

  • 1. Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus.
    Tokuda H; Unemoto T
    J Biol Chem; 1982 Sep; 257(17):10007-14. PubMed ID: 7107593
    [No Abstract]   [Full Text] [Related]  

  • 2. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus.
    Tokuda H; Unemoto T
    Biochem Biophys Res Commun; 1981 Sep; 102(1):265-71. PubMed ID: 7306152
    [No Abstract]   [Full Text] [Related]  

  • 3. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump.
    Tokuda H
    Biochem Biophys Res Commun; 1983 Jul; 114(1):113-8. PubMed ID: 6882417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus.
    Tokuda H; Asano M; Shimamura Y; Unemoto T; Sugiyama S; Imae Y
    J Biochem; 1988 Apr; 103(4):650-5. PubMed ID: 3170506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus.
    Kakinuma Y; Unemoto T
    J Bacteriol; 1985 Sep; 163(3):1293-5. PubMed ID: 4030698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions.
    Tokuda H; Unemoto T
    J Bacteriol; 1983 Nov; 156(2):636-43. PubMed ID: 6313611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.
    MacLeod RA; Wisse GA; Stejskal FL
    J Bacteriol; 1988 Sep; 170(9):4330-7. PubMed ID: 3045092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of respiratory activity on starvation survival of marine vibrios.
    Smigielski AJ; Wallace BJ; Abrahams S; Marshall KC
    Arch Microbiol; 1990; 153(2):175-80. PubMed ID: 2154166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus.
    Dibrov PA; Skulachev VP; Sokolov MV; Verkhovskaya ML
    FEBS Lett; 1988 Jun; 233(2):355-8. PubMed ID: 2968282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition.
    Fujiwara-Nagata E; Eguchi M
    FEMS Microbiol Lett; 2004 May; 234(1):163-7. PubMed ID: 15109735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Existence of Na+-translocating NADH-quinone reductase in Haemophilus influenzae.
    Hayashi M; Nakayama Y; Unemoto T
    FEBS Lett; 1996 Mar; 381(3):174-6. PubMed ID: 8601449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Na(+)-motive respiratory chain of marine bacteria.
    Tokuda H; Unemoto T
    Microbiol Sci; 1985; 2(3):65-6, 69-71. PubMed ID: 2856376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-linked sodium transport in Streptococcus faecalis. II. Energy coupling in everted membrane vesicles.
    Heefner DL; Kobayashi H; Harold FM
    J Biol Chem; 1980 Dec; 255(23):11403-7. PubMed ID: 6777379
    [No Abstract]   [Full Text] [Related]  

  • 14. Proton-coupled sodium uptake by membrane vesicles from Azotobacter vinelandii.
    Bhattacharyya P; Barnes EM
    J Biol Chem; 1978 Jun; 253(11):3848-51. PubMed ID: 25893
    [No Abstract]   [Full Text] [Related]  

  • 15. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on Na+ -coupled oxidative phosphorylation: ATP formation supported by artificially imposed delta pNa and delta pK in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    J Bioenerg Biomembr; 1989 Jun; 21(3):347-57. PubMed ID: 2473063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus.
    Tokuda H
    FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes.
    Grinius L; Slusnyte R; Griniuviene B
    FEBS Lett; 1975 Oct; 57(3):290-3. PubMed ID: 241667
    [No Abstract]   [Full Text] [Related]  

  • 20. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.