These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 7108143)
1. Applicator exposure to 2,4-D, dicamba, and a dicamba isomer. Draper WM; Street JC J Environ Sci Health B; 1982; 17(4):321-39. PubMed ID: 7108143 [TBL] [Abstract][Full Text] [Related]
2. Procedure for the determination of 2,4-D and dicamba in inhalation, dermal, hand-wash, and urine samples from spray applicators. Grover R; Cessna AJ; Kerr LA J Environ Sci Health B; 1985 Feb; 20(1):113-28. PubMed ID: 3989220 [TBL] [Abstract][Full Text] [Related]
3. Persistence of 2,4-D,2,4,5-T and dicamba in a dykeland soil. Stewart DK; Gaul SO Bull Environ Contam Toxicol; 1977 Aug; 18(2):210-8. PubMed ID: 890157 [No Abstract] [Full Text] [Related]
4. Electron capture gas-liquid chromatographic method for the simultaneous analysis of 2,4-D, dicamba, and mecoprop residues in soil, wheat, and barley. Khan SU J Assoc Off Anal Chem; 1975 Sep; 58(5):1027-31. PubMed ID: 1158822 [TBL] [Abstract][Full Text] [Related]
5. Collaborative study of infrared analysis of dicamba--2-methyl-4-chlorophenoxyacetic acid and dicamba--2,4-dichlorophenoxyacetic acid formulations. Maline M J Assoc Off Anal Chem; 1971 May; 54(3):706-10. PubMed ID: 5162930 [No Abstract] [Full Text] [Related]
6. Biomarker correlations of urinary 2,4-D levels in foresters: genomic instability and endocrine disruption. Garry VF; Tarone RE; Kirsch IR; Abdallah JM; Lombardi DP; Long LK; Burroughs BL; Barr DB; Kesner JS Environ Health Perspect; 2001 May; 109(5):495-500. PubMed ID: 11401761 [TBL] [Abstract][Full Text] [Related]
7. Dicamba and 2,4-D residues following applicator cleanout: A potential point source to the environment and worker exposure. Osborne PP; Xu Z; Swanson KD; Walker T; Farmer DK J Air Waste Manag Assoc; 2015 Sep; 65(9):1153-8. PubMed ID: 26199008 [TBL] [Abstract][Full Text] [Related]
8. Dicamba residues in streams after forest spraying. Norris LA; Montgomery ML Bull Environ Contam Toxicol; 1975 Jan; 13(1):1-8. PubMed ID: 1131430 [No Abstract] [Full Text] [Related]
9. Indirect sources of herbicide exposure for families on Ontario farms. Arbuckle TE; Bruce D; Ritter L; Hall JC J Expo Sci Environ Epidemiol; 2006 Jan; 16(1):98-104. PubMed ID: 16015277 [TBL] [Abstract][Full Text] [Related]
10. [Determination of 2-methoxy-3,6-dichlorobenzoic acid (Banvel D) in apples by thin-layer chromatography]. Vaĭntraub FP; Nesterova IP Gig Sanit; 1973 May; 38(5):79-81. PubMed ID: 4769803 [No Abstract] [Full Text] [Related]
11. Procedure for the determination of residues of (2,4-dichlorophenoxy)acetic acid in dermal exposure pads, hand rinses, urine, and perspiration from agricultural workers exposed to the herbicide. Sell CR; Maitlen JC J Agric Food Chem; 1983; 31(3):572-5. PubMed ID: 6886213 [No Abstract] [Full Text] [Related]
12. 2,4-Dichlorophenoxyacetic acid residues in semen of Ontario farmers. Arbuckle TE; Schrader SM; Cole D; Hall JC; Bancej CM; Turner LA; Claman P Reprod Toxicol; 1999; 13(6):421-9. PubMed ID: 10613390 [TBL] [Abstract][Full Text] [Related]
13. Urinary biomarker, dermal, and air measurement results for 2,4-D and chlorpyrifos farm applicators in the Agricultural Health Study. Thomas KW; Dosemeci M; Hoppin JA; Sheldon LS; Croghan CW; Gordon SM; Jones ML; Reynolds SJ; Raymer JH; Akland GG; Lynch CF; Knott CE; Sandler DP; Blair AE; Alavanja MC J Expo Sci Environ Epidemiol; 2010 Mar; 20(2):119-34. PubMed ID: 19240759 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous determination of three acidic herbicide residues in food crops using HPLC and confirmation via LC-MS/MS. Shin EH; Choi JH; Abd El-Aty AM; Khay S; Kim SJ; Im MH; Kwon CH; Shim JH Biomed Chromatogr; 2011 Jan; 25(1-2):124-35. PubMed ID: 20842699 [TBL] [Abstract][Full Text] [Related]
15. Stimultaneous determination of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, and 2-methoxy-3,6-dichlorobenzoic acid in soil and water by gas chromatography with electron capture detector. Purkayastha R J Agric Food Chem; 1974; 22(3):453-8. PubMed ID: 4840512 [No Abstract] [Full Text] [Related]
16. Development of models to predict dose of pesticides in professional turf applicators. Harris SA; Sass-Kortsak AM; Corey PN; Purdham JT J Expo Anal Environ Epidemiol; 2002 Mar; 12(2):130-44. PubMed ID: 11965530 [TBL] [Abstract][Full Text] [Related]
17. Body mass index and bromoxynil exposure in a sample of rural residents during spring herbicide application. Semchuk K; McDuffie H; Senthilselvan A; Cessna A; Irvine D J Toxicol Environ Health A; 2004 Sep; 67(17):1321-52. PubMed ID: 15371235 [TBL] [Abstract][Full Text] [Related]
18. On-line monitoring of the photocatalytic degradation of 2,4-D and dicamba using a solid-phase extraction-multisyringe flow injection system. Chávez-Moreno C; Ferrer L; Hinojosa-Reyes L; Hernández-Ramírez A; Cerdà V; Guzmán-Mar J J Environ Manage; 2013 Nov; 129():377-83. PubMed ID: 23994580 [TBL] [Abstract][Full Text] [Related]
19. [Data for establishing the maximum permissible concentration of the herbicide Banvel D in the soil]. Naĭshteĭn SIa; Chegrinets GIa; Voronova GF; Nikula RG; Bezborod'ko MD Gig Sanit; 1981 Jan; (1):86-8. PubMed ID: 7203054 [No Abstract] [Full Text] [Related]
20. Effect of planting covers on herbicide persistence in landscape soils. Gan J; Zhu Y; Wilen C; Pittenger D; Crowley D Environ Sci Technol; 2003 Jun; 37(12):2775-9. PubMed ID: 12854718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]