BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 7108514)

  • 1. Ventriculo-cisternal perfusion of twelve amino acids in the rabbit.
    Davson H; Hollingsworth JG; Carey MB; Fenstermacher JD
    J Neurobiol; 1982 Jul; 13(4):293-318. PubMed ID: 7108514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-Delta 2-valproic acid in rabbits.
    Scism JL; Powers KM; Artru AA; Chambers AC; Lewis L; Adkison KK; Kalhorn TF; Shen DD
    Drug Metab Dispos; 1997 Dec; 25(12):1337-46. PubMed ID: 9394022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine transport from cerebrospinal fluid.
    Murray JE; Cutler RW
    Neurology; 1970 Apr; 20(4):393. PubMed ID: 5535025
    [No Abstract]   [Full Text] [Related]  

  • 4. Acidic amino acid clearance from CSF in the neonatal versus adult rat using ventriculo-cisternal perfusion.
    Al-Sarraf H; Preston JE; Segal MB
    J Neurochem; 2000 Feb; 74(2):770-6. PubMed ID: 10646529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ventriculo-cisternal perfusion of amino acids in cat brain. I. Rates of disappearance from the perfusate.
    Levin E; Nogueira GJ; Garcia Argiz CA
    J Neurochem; 1966 Aug; 13(8):761-7. PubMed ID: 5950057
    [No Abstract]   [Full Text] [Related]  

  • 6. Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system.
    Greig NH; Momma S; Sweeney DJ; Smith QR; Rapoport SI
    Cancer Res; 1987 Mar; 47(6):1571-6. PubMed ID: 3815357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventriculo-cisternal perfusion of amino acids in cat brain. II. Incorporation of glutamic acid, glutamine and GABA into the brain parenchyma.
    Levin E; García Argiz CA; Nogueira GJ
    J Neurochem; 1966 Oct; 13(10):979-88. PubMed ID: 5927768
    [No Abstract]   [Full Text] [Related]  

  • 8. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system.
    Deguchi Y; Nozawa K; Yamada S; Yokoyama Y; Kimura R
    J Pharmacol Exp Ther; 1997 Feb; 280(2):551-60. PubMed ID: 9023263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrospinal fluid concentrations of large neutral and basic amino acids in Macaca mulatta: diurnal variations and responses to chronic changes in dietary protein intake.
    Grimes MA; Cameron JL; Fernstrom JD
    Metabolism; 2009 Jan; 58(1):129-40. PubMed ID: 19059540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active transport of 131-I across the blood-brain barrier.
    Davson H; Hollingsworth JR
    J Physiol; 1973 Sep; 233(2):327-47. PubMed ID: 4355804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of osmolarity on CSF volume during ventriculo-aqueductal and ventriculo-cisternal perfusions in cats.
    Maraković J; Oresković D; Rados M; Vukić M; Jurjević I; Chudy D; Klarica M
    Neurosci Lett; 2010 Oct; 484(2):93-7. PubMed ID: 20674671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between blood and saline perfusion on the uptake of amino acids by choroid plexus of the sheep.
    Segal MB; Preston JE; Zlokovic B
    Endocrinol Exp; 1990 Mar; 24(1-2):29-36. PubMed ID: 2361466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the transport of morphine out of the perfused cerebral ventricles of rabbits.
    Wang JH; Takemori AE
    J Pharmacol Exp Ther; 1972 Apr; 181(1):46-52. PubMed ID: 4259016
    [No Abstract]   [Full Text] [Related]  

  • 15. Transport of choline out of the cranial cerebrospinal fluid spaces of the rabbit.
    Lanman RC; Schanker LS
    J Pharmacol Exp Ther; 1980 Dec; 215(3):563-8. PubMed ID: 7441516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier.
    O'Kane RL; Hawkins RA
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1167-73. PubMed ID: 12933350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier.
    Tsuji A; Saheki A; Tamai I; Terasaki T
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1085-90. PubMed ID: 8263769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+.
    O'Kane RL; Viña JR; Simpson I; Zaragozá R; Mokashi A; Hawkins RA
    Am J Physiol Endocrinol Metab; 2006 Aug; 291(2):E412-9. PubMed ID: 16569760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic amino acid accumulation by rat choroid plexus during development.
    al-Sarraf H; Preston JE; Segal MB
    Brain Res Dev Brain Res; 1997 Aug; 102(1):47-52. PubMed ID: 9298233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system.
    Javaheri S; Wagner KR
    J Clin Invest; 1993 Nov; 92(5):2257-61. PubMed ID: 8227341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.