These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7108906)

  • 1. Hydrogen bonding and anesthetic potency.
    Yokono S; Shieh DD; Goto H; Arakawa K
    J Med Chem; 1982 Jul; 25(7):873-6. PubMed ID: 7108906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of electrostatic interactions in governing anesthetic action on the torpedo nicotinic acetylcholine receptor.
    Raines DE; Claycomb RJ
    Anesth Analg; 2002 Aug; 95(2):356-61, table of contents. PubMed ID: 12145051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of hydrogen bonding in general anesthesia.
    Abraham MH; Lieb WR; Franks NP
    J Pharm Sci; 1991 Aug; 80(8):719-24. PubMed ID: 1791528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 degrees C.
    Lerman J; Willis MM; Gregory GA; Eger EI
    Anesthesiology; 1983 Dec; 59(6):554-8. PubMed ID: 6418030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine bilayer.
    Shieh DD; Ueda I; Lin H; Eyring H
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3999-4002. PubMed ID: 1069285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane expansion and inhalation anesthetics. Mean excess volume hypothesis.
    Mori T; Matubayasi N; Ueda I
    Mol Pharmacol; 1984 Jan; 25(1):123-30. PubMed ID: 6546781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Antibacterial and antifungal activity of isoflurane and common anesthetic gases].
    Giorgi A; Parodi F; Piacenza G; Mantellini E; Salio M; Cremonte LG; Grosso E
    Minerva Med; 1986 Nov; 77(42-43):2007-10. PubMed ID: 3534634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis.
    Koblin DD; Chortkoff BS; Laster MJ; Eger EI; Halsey MJ; Ionescu P
    Anesth Analg; 1994 Dec; 79(6):1043-8. PubMed ID: 7978424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency.
    Tinker JH; Sharbrough FW; Michenfelder JD
    Anesthesiology; 1977 Apr; 46(4):252-9. PubMed ID: 402870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anesthetic potencies and the unitary theory of narcosis.
    Deady JE; Koblin DD; Eger EI; Heavner JE; D'Aoust B
    Anesth Analg; 1981 Jun; 60(6):380-4. PubMed ID: 7195159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of anesthetics on hydrogen bonds. An infrared study at low anesthetic concentrations.
    Buchet R; Sandorfy C
    Biophys Chem; 1985 Oct; 22(4):249-54. PubMed ID: 4063451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in anesthetic uptake, excretion, and blood solubility in man after eating.
    Munson ES; Eger EI; Tham MK; Embro WJ
    Anesth Analg; 1978; 57(2):224-31. PubMed ID: 565161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extent of metabolism of inhaled anesthetics in humans.
    Carpenter RL; Eger EI; Johnson BH; Unadkat JD; Sheiner LB
    Anesthesiology; 1986 Aug; 65(2):201-5. PubMed ID: 3740510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency.
    North C; Cafiso DS
    Biophys J; 1997 Apr; 72(4):1754-61. PubMed ID: 9083679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of action of anesthetic gases.
    Cuthbert AW
    Int Anesthesiol Clin; 1971; 9(3):1-16. PubMed ID: 4376801
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of age on the solubility of volatile anesthetics in human tissues.
    Lerman J; Schmitt-Bantel BI; Gregory GA; Willis MM; Eger EI
    Anesthesiology; 1986 Sep; 65(3):307-11. PubMed ID: 3752575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depressant effects of volatile anesthetics upon rat and amphibian ventricular myocardium: insights into anesthetic mechanisms of action.
    Lynch C; Frazer MJ
    Anesthesiology; 1989 Mar; 70(3):511-22. PubMed ID: 2784293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anesthetic potencies of n-alkanols: results of additivity and solubility studies suggest a mechanism of action similar to that for conventional inhaled anesthetics.
    Fang Z; Ionescu P; Chortkoff BS; Kandel L; Sonner J; Laster MJ; Eger EI
    Anesth Analg; 1997 May; 84(5):1042-8. PubMed ID: 9141929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An isothermal titration calorimetry study on the binding of four volatile general anesthetics to the hydrophobic core of a four-alpha-helix bundle protein.
    Zhang T; Johansson JS
    Biophys J; 2003 Nov; 85(5):3279-85. PubMed ID: 14581228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubility of I-653, sevoflurane, isoflurane, and halothane in plastics and rubber composing a conventional anesthetic circuit.
    Targ AG; Yasuda N; Eger EI
    Anesth Analg; 1989 Aug; 69(2):218-25. PubMed ID: 2764290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.