These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 7109339)

  • 61. The effect of adenylate cyclase stimulation on endocochlear potential in the guinea pig.
    Doi K; Mori N; Matsunaga T
    Eur Arch Otorhinolaryngol; 1990; 247(1):16-9. PubMed ID: 2310543
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tetraethylammonium and tetrodotoxin: effects on cochlear potentials.
    Katsuki Y; Yanagisawa K; Kanzaki J
    Science; 1966 Mar; 151(3717):1544-5. PubMed ID: 5909587
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Endolymph formation in the inner ear of pigeons.
    Ninoyu O; Hommerich C; Morgenstern C
    ORL J Otorhinolaryngol Relat Spec; 1987; 49(1):1-8. PubMed ID: 3561967
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential.
    Hibino H; Horio Y; Inanobe A; Doi K; Ito M; Yamada M; Gotow T; Uchiyama Y; Kawamura M; Kubo T; Kurachi Y
    J Neurosci; 1997 Jun; 17(12):4711-21. PubMed ID: 9169531
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Some observations on negative endocochlear potential during anoxia.
    Konishi T
    Acta Otolaryngol; 1979; 87(5-6):506-16. PubMed ID: 463522
    [TBL] [Abstract][Full Text] [Related]  

  • 66. ATP in endolymph enhances electrically-evoked oto-acoustic emissions from the guinea pig cochlea.
    Kirk DL; Yates GK
    Neurosci Lett; 1998 Jul; 250(3):149-52. PubMed ID: 9708854
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Antidiuretic hormone restores the endolymphatic longitudinal K+ gradient in the Brattleboro rat cochlea.
    Julien N; Loiseau A; Sterkers O; Amiel C; Ferrary E
    Pflugers Arch; 1994 Mar; 426(5):446-52. PubMed ID: 8015893
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Effect of potassium canrenoate on the EP and Na+, K+ activities in endolymph].
    Wakizono S; Komune S; Hisashi K; Uemura T
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Mar; 93(3):373-80. PubMed ID: 2352044
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of intracochlear aminooxyacetic acid on cochlear potentials and endolymph composition.
    Robbin RP; Gondra MI
    Ann Otol Rhinol Laryngol; 1975; 84(2 PART 1):192-7. PubMed ID: 1124907
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Susceptibility of the endocochlear potential to pH and osmolarity changes in the perilymph of the cochlea in the guinea pig.
    Wakizono S; Komune S; Uemura T
    Eur Arch Otorhinolaryngol; 1990; 247(2):97-9. PubMed ID: 2317365
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prenatal maturation of endocochlear potential and electrolyte composition of inner ear fluids in guinea pigs.
    Raphael Y; Ohmura M; Kanoh N; Yagi N; Makimoto K
    Arch Otorhinolaryngol; 1983; 237(2):147-52. PubMed ID: 6847513
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inter- and intracompartmental osmotic gradients within the rat cochlea.
    Sterkers O; Ferrary E; Amiel C
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F602-6. PubMed ID: 6496688
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Change in K+ activity of the scala media produced by vasopressin.
    Shugyo A; Mori N; Matsunaga T
    ORL J Otorhinolaryngol Relat Spec; 1989; 51(3):156-60. PubMed ID: 2734006
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of elevated potassium concentration in the perilymph on the nonlinearity of cochlear microphonics in the guinea-pig cochlea.
    Avan P; Legouix JP
    Hear Res; 1988 Sep; 35(2-3):159-64. PubMed ID: 3198508
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph.
    Sauer G; Richter CP; Klinke R
    Hear Res; 1999 Mar; 129(1-2):1-6. PubMed ID: 10190746
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ca(2+) regulation of endocochlear potential in marginal cells.
    Mori Y; Watanabe M; Inui T; Nimura Y; Araki M; Miyamoto M; Takenaka H; Kubota T
    J Physiol Sci; 2009 Sep; 59(5):355-65. PubMed ID: 19504169
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport.
    Higashiyama K; Takeuchi S; Azuma H; Sawada S; Yamakawa K; Kakigi A; Takeda T
    Hear Res; 2003 Dec; 186(1-2):1-9. PubMed ID: 14644454
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Increased fatigue of cochlear potentials after injection of KCl solution in the perilymph.
    Legouix JP; Pierson A
    Audiology; 1977; 16(6):453-61. PubMed ID: 921603
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of various vanadium compounds on cochlear potentials.
    Nakano T; Morimitsu T
    Acta Otolaryngol Suppl; 1988; 456():132-6. PubMed ID: 2852429
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Low-frequency modulation of compound action potential in experimental perilymphatic fistula and endolymphatic hydrops.
    Tono T; Morizono T
    Hear Res; 1992 Jun; 60(1):27-33. PubMed ID: 1500374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.