These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7110078)

  • 1. Angular response of miniature ultrasonic hydrophones.
    Shombert DG; Smith SW; Harris GR
    Med Phys; 1982; 9(4):484-92. PubMed ID: 7110078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of two calibration methods for ultrasonic hydrophones.
    Gloersen WB; Harris GR; Stewart HF; Lewin PA
    Ultrasound Med Biol; 1982; 8(5):545-8. PubMed ID: 7147468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency response of PVDF needle-type hydrophones.
    Fay B; Ludwig G; Lankjaer C; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):361-6. PubMed ID: 8085292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directivity and Frequency-Dependent Effective Sensitive Element Size of Needle Hydrophones: Predictions From Four Theoretical Forms Compared With Measurements.
    Wear KA; Baker C; Miloro P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1781-1788. PubMed ID: 30010557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of errors in intensity measurements of pulse echo ultrasound using miniature hydrophones.
    Fischella PS; Carson PL
    Med Phys; 1979; 6(5):404-11. PubMed ID: 492074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.
    Rajagopal S; Zeqiri B; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2325-33. PubMed ID: 22083766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ultrasonic transducers using a fiberoptic sensor.
    Wu YQ; Shankar PM; Lewin PA
    Ultrasound Med Biol; 1994; 20(7):645-53. PubMed ID: 7810025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid piston approximation for computing the transfer function and angular response of a fiber-optic hydrophone.
    Krückler JF; Eisenberg A; Krix M; Lötsch R; Pessel M; Trier HG
    J Acoust Soc Am; 2000 Apr; 107(4):1994-2003. PubMed ID: 10790026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time delay spectrometry for hydrophone calibrations below 1 MHz.
    Gammell PM; Harris GR
    J Acoust Soc Am; 1999 Nov; 106(5):L41-6. PubMed ID: 10573913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A discussion of procedures for ultrasonic intensity and power calculations from miniature hydrophone measurements.
    Harris GR
    Ultrasound Med Biol; 1985; 11(6):803-17. PubMed ID: 3913079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic resonant modes of piezoelectric balloons under internal pressure.
    Denham LV; Rice DA
    J Acoust Soc Am; 2012 Sep; 132(3):1368-77. PubMed ID: 22978865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25-2.5 MHz.
    Lewin PA; Bautista R; Devaraju V
    Ultrasound Med Biol; 1999 Sep; 25(7):1131-7. PubMed ID: 10574344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
    Huttunen T; Kaipio JP; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of spatial polarization distribution on spot poled PVDF membrane hydrophone performance.
    Fay B; Lewin PA; Ludwig G; Sessler GM; Yang G
    Ultrasound Med Biol; 1992; 18(6-7):625-35. PubMed ID: 1413274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design and fabrication of high frequency poly(vinylidene fluoride) transducers.
    Sherar MD; Foster FS
    Ultrason Imaging; 1989 Apr; 11(2):75-94. PubMed ID: 2734975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cylindrical PVDF film transmitters and receivers for air ultrasound.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):626-34. PubMed ID: 12046938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.