These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7110079)

  • 1. Optimal photon energies with respect to absorbed dose for visualization of soft tissue masses with adipose tissue.
    Ragozzino MW
    Med Phys; 1982; 9(4):493-6. PubMed ID: 7110079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms.
    Kuzmiak CM; Pisano ED; Cole EB; Zeng D; Burns CB; Roberto C; Pavic D; Lee Y; Seo BK; Koomen M; Washburn D
    Med Phys; 2005 Oct; 32(10):3144-50. PubMed ID: 16279068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of electrostatic imaging systems for minimum patient dose or minimum exposure in mammography.
    Muntz EP; Welkowsky M; Kaegi E; Morsell L; Wilkinson E; Jacobson G
    Radiology; 1978 May; 127(2):517-23. PubMed ID: 644080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comments on "Optimal photon energies with respect to absorbed dose for visualization of soft tissue masses within adipose tissue". I. Discussion.
    Muntz EP
    Med Phys; 1983; 10(3):375-6. PubMed ID: 6877188
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of full-field digital mammography and screen-film mammography for detection and characterization of simulated small masses.
    Yang WT; Lai CJ; Whitman GJ; Murphy WA; Dryden MJ; Kushwaha AC; Sahin AA; Johnston D; Dempsey PJ; Shaw CC
    AJR Am J Roentgenol; 2006 Dec; 187(6):W576-81. PubMed ID: 17114508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of breast composition on absorbed dose and image contrast.
    Skubic SE; Fatouros PP
    Med Phys; 1989; 16(4):544-52. PubMed ID: 2770628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of digital mammography in needle localization procedures.
    Dershaw DD; Fleischman RC; Liberman L; Deutch B; Abramson AF; Hann L
    AJR Am J Roentgenol; 1993 Sep; 161(3):559-62. PubMed ID: 8352104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital versus screen-film mammography: a retrospective comparison in a population-based screening program.
    Heddson B; Rönnow K; Olsson M; Miller D
    Eur J Radiol; 2007 Dec; 64(3):419-25. PubMed ID: 17383841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study.
    Dance DR; Thilander AK; Sandborg M; Skinner CL; Castellano IA; Carlsson GA
    Br J Radiol; 2000 Oct; 73(874):1056-67. PubMed ID: 11271898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of anatomical noise on optimal beam quality in mammography.
    Cederström B; Fredenberg E
    Med Phys; 2014 Dec; 41(12):121903. PubMed ID: 25471963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation studies of optimum energies for DXA: dependence on tissue type, patient size and dose model.
    Michael GJ; Henderson CJ
    Australas Phys Eng Sci Med; 1999 Dec; 22(4):126-35. PubMed ID: 10740885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screen-film mammographic technique for breast cancer screening.
    Stanton L; Day JL; Villafana T; Miller CH; Lightfoot DA
    Radiology; 1987 May; 163(2):471-9. PubMed ID: 3562829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic range requirements in digital mammography.
    Maidment AD; Fahrig R; Yaffe MJ
    Med Phys; 1993; 20(6):1621-33. PubMed ID: 8309434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast lesion detection and classification: comparison of screen-film mammography and full-field digital mammography with soft-copy reading--observer performance study.
    Skaane P; Balleyguier C; Diekmann F; Diekmann S; Piguet JC; Young K; Niklason LT
    Radiology; 2005 Oct; 237(1):37-44. PubMed ID: 16100086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies.
    Enger SA; Ahnesjö A; Verhaegen F; Beaulieu L
    Phys Med Biol; 2012 Jul; 57(14):4489-500. PubMed ID: 22722477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.
    Helmrot E; Alm Carlsson G
    Acta Radiol Suppl; 1996; 402():1-50. PubMed ID: 8677807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation dose in mammography: an energy-balance approach.
    Shrivastava PN
    Radiology; 1981 Aug; 140(2):483-90. PubMed ID: 7255726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose.
    Berns EA; Hendrick RE; Cutter GR
    Med Phys; 2003 Mar; 30(3):334-40. PubMed ID: 12674233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comments on "Optimal photon energies with respect to absorbed dose for visualization of soft tissue masses within adipose tissue".
    Muntz EP
    Med Phys; 1983 May; 10(3):375. PubMed ID: 29505107
    [No Abstract]   [Full Text] [Related]  

  • 20. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources.
    De Caro L; Giannini C; Bellotti R; Tangaro S
    Med Phys; 2009 Oct; 36(10):4644-53. PubMed ID: 19928096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.