These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7110083)

  • 1. Reconsideration of the power-law (Batho) equation for inhomogeneity corrections.
    Wong JW; Henkelman RM
    Med Phys; 1982; 9(4):521-30. PubMed ID: 7110083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of inhomogeneity correction algorithms in small photon fields.
    Jones AO; Das IJ
    Med Phys; 2005 Mar; 32(3):766-76. PubMed ID: 15839349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical application of the differential Batho method for inhomogeneity correction on kerma in a photon beam.
    Yuen K; Kornelsen RO
    Med Phys; 1988; 15(1):74-7. PubMed ID: 3127665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification by Monte Carlo methods of a power law tissue-air ratio algorithm for inhomogeneity corrections in photon beam dose calculations.
    Webb S; Fox RA
    Phys Med Biol; 1980 Mar; 25(2):225-40. PubMed ID: 7384209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On methods of inhomogeneity corrections for photon transport.
    Wong JW; Purdy JA
    Med Phys; 1990; 17(5):807-14. PubMed ID: 2233566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A differential method for inhomogeneity correction on dose in a photon beam.
    Yuen K; McParland BJ; Kornelsen RO
    Med Phys; 1984; 11(1):15-21. PubMed ID: 6422221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified power-law formula for inhomogeneity corrections in beams of high-energy x rays.
    Thomas SJ
    Med Phys; 1991; 18(4):719-23. PubMed ID: 1921876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The implementation of a generalised Batho inhomogeneity correction for radiotherapy planning with direct use of CT numbers.
    Cassell KJ; Hobday PA; Parker RP
    Phys Med Biol; 1981 Sep; 26(5):825-33. PubMed ID: 7291303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved lung dose calculation using tissue-maximum ratios in the Batho correction.
    El-Khatib E; Battista JJ
    Med Phys; 1984; 11(3):279-86. PubMed ID: 6429498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A derivation of Batho's correction factor for heterogeneities.
    Lulu BA; Bjärngard BE
    Med Phys; 1982; 9(6):907-9. PubMed ID: 7162477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of electron transport on the accuracy of computed dose.
    Arnfield MR; Siantar CH; Siebers J; Garmon P; Cox L; Mohan R
    Med Phys; 2000 Jun; 27(6):1266-74. PubMed ID: 10902555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models.
    du Plessis FC; Willemse CA; Lötter MG; Goedhals L
    Med Phys; 2001 Apr; 28(4):582-9. PubMed ID: 11339755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple equivalent tissue-air ratio method for calculating absorbed dose in a heterogeneous medium.
    Tatcher M; Palti S
    Radiology; 1983 Feb; 146(2):527-9. PubMed ID: 6849101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: an anthropomorphic phantom study of radiotherapy treatment planning.
    Tsukihara M; Noto Y; Sasamoto R; Hayakawa T; Saito M
    Med Phys; 2015 Mar; 42(3):1378-88. PubMed ID: 25735292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of non-standard CT conversion ramps for Monte Carlo verification of 6 MV prostate IMRT plans.
    Zarza-Moreno M; Cardoso I; Teixeira N; Jesus AP; Mora G
    Phys Med; 2013 Jun; 29(4):357-67. PubMed ID: 22677401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement and evaluation of inhomogeneity corrections and monitor unit verification for treatment planning.
    Saxena R; Higgins P
    Med Dosim; 2010; 35(1):19-27. PubMed ID: 19931010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling transmission and scatter for photon beam attenuators.
    Ahnesjö A; Weber L; Nilsson P
    Med Phys; 1995 Nov; 22(11 Pt 1):1711-20. PubMed ID: 8587523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical model for photon beams used on the General Electric Target radiotherapy treatment planning system.
    Bateman TJ; Procter EK
    Strahlenther Onkol; 1988 Jul; 164(7):415-8. PubMed ID: 3400050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental analysis of scatter from inhomogeneous slabs in a 60Co beam: the differential tissue-air ratio method (DTAR).
    Kappas K; Rosenwald JC
    Phys Med Biol; 1986 Nov; 31(11):1211-28. PubMed ID: 3786408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The differential scatter-air ratio and differential backscatter factor method combined with the density scaling theorem.
    Iwasaki A; Ishito T
    Med Phys; 1984; 11(6):755-63. PubMed ID: 6513883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.