These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 7110119)
1. Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids. Trudell JR; Bösterling B; Trevor AJ Mol Pharmacol; 1982 May; 21(3):710-7. PubMed ID: 7110119 [No Abstract] [Full Text] [Related]
2. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R; Tolando R; King LJ; Manno M Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458 [TBL] [Abstract][Full Text] [Related]
3. Stimulatory effects of halothane and isoflurane on fluoride release and cytochrome P-450 loss caused by metabolism of 2-chloro-1,1-difluoroethene, a halothane metabolite. Baker MT; Bates JN; Leff SV Anesth Analg; 1987 Nov; 66(11):1141-7. PubMed ID: 2889401 [TBL] [Abstract][Full Text] [Related]
4. Characterization of halothane oxidation by hepatic microsomes and purified cytochromes P-450 using a gas chromatographic mass spectrometric assay. Gruenke LD; Konopka K; Koop DR; Waskell LA J Pharmacol Exp Ther; 1988 Aug; 246(2):454-9. PubMed ID: 3404442 [TBL] [Abstract][Full Text] [Related]
5. Reductive halothane metabolite formation and halothane binding in rat hepatic microsomes. Baker MT; Van Dyke RA Chem Biol Interact; 1984 Apr; 49(1-2):121-32. PubMed ID: 6722932 [TBL] [Abstract][Full Text] [Related]
6. Oxygen concentrations required for reductive defluorination of halothane by rat hepatic microsomes. Lind RC; Gandolfi AJ; Sipes IG; Brown BR; Waters SJ Anesth Analg; 1986 Aug; 65(8):835-9. PubMed ID: 3729018 [TBL] [Abstract][Full Text] [Related]
7. Reductive metabolism of halothane by cytochrome P450 isoforms in rats and humans. Chow T; Imaoka S; Hiroi T; Funae Y Res Commun Mol Pathol Pharmacol; 1996 Sep; 93(3):363-74. PubMed ID: 8896047 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the reductive metabolism of halothane by microsomal cytochrome b5 in rat liver. Tamura S; Kawata S; Sugiyama T; Tarui S Biochim Biophys Acta; 1987 Dec; 926(3):231-8. PubMed ID: 3689822 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory effect of paraquat on biotransformation of halothane in rabbit liver microsomes. Kawamoto M; Fujii K; Yuge O; Morio M Hiroshima J Med Sci; 1989 Dec; 38(4):161-7. PubMed ID: 2637243 [TBL] [Abstract][Full Text] [Related]
10. Metabolic activation of the halothane metabolite, [14C]2-chloro-1,1-difluoroethene, in hepatic microsomes. Baker MT; Bates JN Drug Metab Dispos; 1988; 16(2):169-72. PubMed ID: 2898328 [TBL] [Abstract][Full Text] [Related]
11. The in vitro metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by hepatic microsomal cytochrome P-450. Karashima D; Hirokata Y; Shigematsu A; Furukawa T J Pharmacol Exp Ther; 1977 Nov; 203(2):409-16. PubMed ID: 909072 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes. Baker MT; Vasquez MT; Bates JN; Chiang CK Drug Metab Dispos; 1990; 18(5):753-8. PubMed ID: 1981732 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of reductive dehalogenation of halothane by liver cytochrome P450. Ahr HJ; King LJ; Nastainczyk W; Ullrich V Biochem Pharmacol; 1982 Feb; 31(3):383-90. PubMed ID: 7073765 [TBL] [Abstract][Full Text] [Related]
14. The reduction of polyhalogenated methanes by liver microsomal cytochrome P450. Wolf CR; Mansuy D; Nastainczyk W; Deutschmann G; Ullrich V Mol Pharmacol; 1977 Jul; 13(4):698-705. PubMed ID: 18662 [No Abstract] [Full Text] [Related]
15. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane. Huwyler J; Aeschlimann D; Christen U; Gut J Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651 [TBL] [Abstract][Full Text] [Related]
16. Isoflurane acts as an inhibitor of oxidative dehalogenation while acting as an accelerator of reductive dehalogenation of halothane in guinea pig liver microsomes. Fujii K Toxicology; 1995 Dec; 104(1-3):123-8. PubMed ID: 8560490 [TBL] [Abstract][Full Text] [Related]
17. The release of inorganic fluoride from halothane and halothane metabolites by cytochrome P-450, hemin, and hemoglobin. Baker MT; Nelson RM; Van Dyke RA Drug Metab Dispos; 1983; 11(4):308-11. PubMed ID: 6137335 [TBL] [Abstract][Full Text] [Related]
18. Reductive metabolism of halothane in children. Plummer JL; Van der Walt JH; Cousins MJ Anaesth Intensive Care; 1984 Nov; 12(4):293-5. PubMed ID: 6517287 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting the formation of chlorotrifluoroethane and chlorodifluoroethylene from halothane. Maiorino RM; Sipes IG; Gandolfi AJ; Brown BR; Lind RC Anesthesiology; 1981 May; 54(5):383-9. PubMed ID: 7224207 [TBL] [Abstract][Full Text] [Related]
20. 1-Chloro-2,2,2-trifluoroethyl radical: Formation from halothane by human cytochrome P-450 in reconstituted vesicles and binding to phospholipids. Trudell JR; Bösterling ; Trevor A Biochem Biophys Res Commun; 1981 Sep; 102(1):372-7. PubMed ID: 6796087 [No Abstract] [Full Text] [Related] [Next] [New Search]