BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7111319)

  • 1. A metabolic approach to the detection of tetrahydroisoquinoline formation from 3H-dopamine in rat brain following treatment with ethanol or chloral hydrate.
    Shier WT; Koda LY; Bloom FE
    Prog Clin Biol Res; 1982; 90():191-200. PubMed ID: 7111319
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of [3H]dopamine following intracerebroventricular injection in rats pretreated with ethanol or chloral hydrate.
    Shier WT; Koda LY; Bloom FE
    Neuropharmacology; 1983 Mar; 22(3):279-86. PubMed ID: 6843789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahydroisoquinolines after ethanol consumption.
    Hirst M; Adams MA; Okamoto S; Gowdey CW; Evans DR; LeBarr JM
    Prog Clin Biol Res; 1982; 90():81-96. PubMed ID: 7111328
    [No Abstract]   [Full Text] [Related]  

  • 4. A novel and neurotoxic tetrahydroisoquinoline derivative in vivo: formation of 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, a condensation product of amphetamines, in brains of rats under chronic ethanol treatment.
    Makino Y; Ohta S; Tasaki Y; Tachikawa O; Kashiwasake M; Hirobe M
    J Neurochem; 1990 Sep; 55(3):963-9. PubMed ID: 2384762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central action of histamine. II. The effect of intraventricular histamine on the action of some drugs and on the level of biogenic amines in the rat brain.
    Jagiello-Wójtowicz E
    Pol J Pharmacol Pharm; 1973; 25(6):511-8. PubMed ID: 4792475
    [No Abstract]   [Full Text] [Related]  

  • 6. Neurochemical changes induced by acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain.
    Antkiewicz-Michaluk L; Romañska I; Papla I; Michaluk J; Bakalarz M; Vetulani J; Krygowska-Wajs A; Szczudlik A
    Neuroscience; 2000; 96(1):59-64. PubMed ID: 10683410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible steady-state concentrations of tetrahydroisoquinolines in brain after the consumption of ethanol.
    Weiner H
    Fed Proc; 1981 May; 40(7):2082-5. PubMed ID: 7227563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanol induced biogenic amine changes in discrete areas of rat brain: role of simultaneous ethanol administration.
    Jeganathan PS; Namasivayam A
    Indian J Physiol Pharmacol; 1988; 32(1):1-10. PubMed ID: 2459060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of (3H) biogenic amine accumulation into rat brain tissue slices by various tryptamine derivatives.
    Heikkila RE; Cohen G
    Res Commun Chem Pathol Pharmacol; 1974 Mar; 7(3):539-47. PubMed ID: 4824828
    [No Abstract]   [Full Text] [Related]  

  • 10. Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline as novel endogenous amines in rat brain.
    Kohno M; Ohta S; Hirobe M
    Biochem Biophys Res Commun; 1986 Oct; 140(1):448-54. PubMed ID: 3778459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrahydroisoquinolines in vivo. I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication.
    Collins MA; Bigdeli MG
    Life Sci; 1975 Feb; 16(4):585-601. PubMed ID: 1168298
    [No Abstract]   [Full Text] [Related]  

  • 12. Chronic cadmium-ethanol administration alters metal distribution and some biochemicals in rat brain.
    Murthy RC; Saxena DK; Lal B; Chandra SV
    Biochem Int; 1989 Jul; 19(1):135-43. PubMed ID: 2775298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of combined exposure to cadmium and ethanol on regional brain biogenic amine levels in the rat.
    Flora SJ; Tandon SK
    Biochem Int; 1987 Oct; 15(4):863-71. PubMed ID: 3435548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloral hydrate and ethanol, but not urethane, alter the clearance of exogenous dopamine recorded by chronoamperometry in striatum of unrestrained rats.
    Sabeti J; Gerhardt GA; Zahniser NR
    Neurosci Lett; 2003 May; 343(1):9-12. PubMed ID: 12749985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of disulfiram and chloral hydrate on the metabolism of catecholamines in rat liver and brain.
    Berger D; Weiner H
    Biochem Pharmacol; 1977 Apr; 26(8):741-7. PubMed ID: 856206
    [No Abstract]   [Full Text] [Related]  

  • 16. Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection.
    Peana AT; Bassareo V; Acquas E
    Neurotox Res; 2019 Nov; 36(4):653-668. PubMed ID: 31049880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-serotonergic effects of urethane and chloral hydrate may not be mediated by a blockade of 5-HT2 receptors. Short communication.
    Dringenberg HC; Baker GB; Urichuk LJ; Vanderwolf CH
    J Neural Transm (Vienna); 1996; 103(6):693-8. PubMed ID: 8836931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model to estimate the in vivo level of tetrahydroisoquinoline in brain during the consumption of ethanol.
    Weiner H
    Prog Clin Biol Res; 1982; 90():69-79. PubMed ID: 7111327
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for inhibition of monoamine oxidase in vivo in rat brain by 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline.
    Fuller RW; Hemrick-Luecke SK
    Res Commun Chem Pathol Pharmacol; 1983 Mar; 39(3):519-22. PubMed ID: 6856953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic rates and multiple functional pools of brain biogenic amines: their significance in neuroendocrine regulation.
    Hyyppä MT
    Med Biol; 1974 Jun; 52(3):170-5. PubMed ID: 4418205
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.