These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7111993)

  • 21. Calculation of angular distribution of 662 keV gamma rays by Monte Carlo method in copper medium.
    Kahraman A; Ozmutlu EN; Gurler O; Yalcin S; Kaynak G; Gundogdu O
    Appl Radiat Isot; 2009 Dec; 67(12):2083-7. PubMed ID: 19487129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The spectrum and angular distribution of x rays scattered from a water phantom.
    Cheng CW; Taylor KW; Holloway AF
    Med Phys; 1995 Aug; 22(8):1235-45. PubMed ID: 7476709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimentally measured scatter fractions and energy spectra as a test of Monte Carlo simulations.
    Manglos SH; Floyd CE; Jaszczak RJ; Greer KL; Harris CC; Coleman RE
    Phys Med Biol; 1987 Mar; 32(3):335-43. PubMed ID: 3575416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies.
    Chan HP; Doi K
    Med Phys; 1985; 12(2):152-65. PubMed ID: 4000070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Quantitative assessment of scattered photons considering skull bone in brain SPECT].
    Maeda S; Ogawa K
    Kaku Igaku; 1994 May; 31(5):431-9. PubMed ID: 8028215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Energy spectral analysis in a photopeak region of 201Hg X-rays for 201Tl imaging].
    Kojima A; Matsumoto M; Oyama Y; Tomiguchi S; Kira M; Takahashi M
    Kaku Igaku; 1997 Feb; 34(2):95-103. PubMed ID: 9095572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scatter rejection by air gaps in diagnostic radiology. Calculations using a Monte Carlo collision density method and consideration of molecular interference in coherent scattering.
    Persliden J; Carlsson GA
    Phys Med Biol; 1997 Jan; 42(1):155-75. PubMed ID: 9015816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The significance of electron binding corrections in Monte Carlo photon transport calculations.
    Williamson JF; Deibel FC; Morin RL
    Phys Med Biol; 1984 Sep; 29(9):1063-73. PubMed ID: 6483972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PION-I. A Monte Carlo computer program for calculations with negative pion beams.
    Wright HA; Hamm RN; Turner JE
    Radiat Res; 1979 Jul; 79(1):1-21. PubMed ID: 472119
    [No Abstract]   [Full Text] [Related]  

  • 30. Simplified model of low energy x-ray backscattering.
    Davidović DM; Vukanić J; Arsenović D
    Phys Med Biol; 2003 Aug; 48(15):N213-21. PubMed ID: 12953917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photon source term after single collision in targets of silicon, copper and lead for 50-500 keV X-ray beams.
    Nariyama N
    J Xray Sci Technol; 2016 Mar; 24(3):343-51. PubMed ID: 27002900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo calculations of the dose induced by charged pions and comparison with experiment.
    Armstrong TW; Chandler KC
    Radiat Res; 1972 Nov; 52(2):247-62. PubMed ID: 4643157
    [No Abstract]   [Full Text] [Related]  

  • 33. Energy imparted to water slabs by photons in the energy range 5-300 keV. Calculations using a Monte Carlo photon transport model.
    Persliden J; Carlsson GA
    Phys Med Biol; 1984 Sep; 29(9):1075-88. PubMed ID: 6483973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corrections for scattered photons in free-air ionisation chambers.
    McEwan AC
    Phys Med Biol; 1982 Mar; 27(3):375-86. PubMed ID: 7071149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The validity of Monte Carlo simulation in studies of scattered radiation in diagnostic radiology.
    Chan HP; Doi K
    Phys Med Biol; 1983 Feb; 28(2):109-29. PubMed ID: 6867102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Air kerma transmission factors of Scattered X-rays in the maze of a Linac room for lead shield].
    Kato H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2005 Jan; 61(1):96-103. PubMed ID: 15682037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and theoretical energy and angular dependencies of scattered radiation in the mammography energy range.
    Klein DJ; Chan HP; Muntz EP; Doi K; Lee K; Chopelas P; Bernstein H; Lee J
    Med Phys; 1983; 10(5):664-8. PubMed ID: 6646072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Theoretical investigations for optimising the quantum in radiodiagnosis (author's transl)].
    Freyer G; Rosenkranz G
    Rofo; 1975 Dec; 123(6):571-9. PubMed ID: 129414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of the single-event energy-deposition distribution on the signal-to-noise ratio in x-ray images in the presence of scattered radiation.
    Spanne P
    Phys Med Biol; 1988 Dec; 33(12):1349-58. PubMed ID: 3237767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of the momentum transfer on the sensitivity of a photon scattering method for the characterization of tissues.
    Leichter I; Karellas A; Craven JD; Greenfield MA
    Med Phys; 1984; 11(1):31-6. PubMed ID: 6700551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.