These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7112584)

  • 1. Regional brain distribution of alpha-amphetamine in lead-exposed rats.
    Zenick H; Lasley SM; Greenland R; Caruso V; Succop P; Price D; Michaelson IA
    Toxicol Appl Pharmacol; 1982 Jun; 64(1):52-63. PubMed ID: 7112584
    [No Abstract]   [Full Text] [Related]  

  • 2. Brain neurotransmitter system and chronic lead intoxication.
    Govoni S; Memo M; Lucchi L; Spano PF; Trabucchi M
    Pharmacol Res Commun; 1980 May; 12(5):447-60. PubMed ID: 6108572
    [No Abstract]   [Full Text] [Related]  

  • 3. Responsiveness to d-amphetamine in lead-exposed rats as measured by steady state levels of catecholamines and locomotor activity.
    Rafales LS; Greenland RD; Zenick H; Goldsmith M; Michaelson IA
    Neurobehav Toxicol Teratol; 1981; 3(3):363-7. PubMed ID: 7290291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative studies on some effects of amphetamine in rats of different ages].
    Ziem M; Coper H; Broermann I; Strauss S
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 267(3):208-23. PubMed ID: 4248861
    [No Abstract]   [Full Text] [Related]  

  • 5. Drug induced activity in lead-exposed mice.
    Rafales LS; Bornschein RL; Michaelson IA; Loch RK; Barker GF
    Pharmacol Biochem Behav; 1979 Jan; 10(1):95-104. PubMed ID: 441099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of lead, d-amphetamine, and time of day on activity levels in the mouse.
    Dolinsky Z; Fink E; Burright RG; Donovick PJ
    Pharmacol Biochem Behav; 1981 Jun; 14(6):877-80. PubMed ID: 7255522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian variations in response to amphetamine and chlorpromazine in the rat.
    Wolfe GW; Bousquet WF; Schnell RC
    Commun Psychopharmacol; 1977; 1(1):29-37. PubMed ID: 606469
    [No Abstract]   [Full Text] [Related]  

  • 8. Hyperactivity in developing rats: sex differences in 6-hydroxydopamine and amphetamine effects.
    Concannon JT; Schechter MD
    Pharmacol Biochem Behav; 1981 Jan; 14(1):5-10. PubMed ID: 7193330
    [No Abstract]   [Full Text] [Related]  

  • 9. Strain differences in lead intoxication in rats.
    Mykkänen HM; Dickerson JW; Lancaster M
    Toxicol Appl Pharmacol; 1980 Mar; 52(3):414-21. PubMed ID: 7368214
    [No Abstract]   [Full Text] [Related]  

  • 10. The regional distribution of amphetamine in rat brain is altered by dosage and by prior exposure to the drug.
    Eison MS; Ellison G; Eison AS
    J Pharmacol Exp Ther; 1981 Jul; 218(1):237-41. PubMed ID: 7241382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neonatal low-level lead exposure in monkeys: locomotor activity, schedule-controlled behavior, and the effects of amphetamine.
    Rice DC; Gilbert SG; Willes RF
    Toxicol Appl Pharmacol; 1979 Dec; 51(3):503-13. PubMed ID: 120039
    [No Abstract]   [Full Text] [Related]  

  • 12. Potentiation of hexobarbital and amphetamine effects in male and female rats physically dependent on morphine.
    Lesher GA; Spratto GR
    Psychopharmacology (Berl); 1978 Apr; 57(2):175-83. PubMed ID: 418452
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of chronic lead administration on noradrenaline level and cholinesterase activity in adult rat brain.
    Wysocka-Paruszewska B; Biel-Baranowska M
    Pol J Pharmacol Pharm; 1979; 31(4):399-405. PubMed ID: 523343
    [No Abstract]   [Full Text] [Related]  

  • 14. The regional distribution of d-amphetamine and local glucose utilization in rat brain during continuous amphetamine administration.
    Eison MS; Eison AS; Ellison G
    Exp Brain Res; 1981; 43(3-4):281-8. PubMed ID: 7196337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An attempt to correlate the development of tolerance to delta-9-tetrahydrocannabinol and d-amphetamine with their subcellular distribution in rat brain.
    Magour S; Coper H; Fähndrich C
    Pol J Pharmacol Pharm; 1976; 28(6):589-92. PubMed ID: 1012982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of correlation between the neurochemical and behavioural effects induced by d-amphetamine in chronically lead-treated rats.
    Memo M; Lucchi L; Spano PF; Trabucchi M
    Neuropharmacology; 1980 Aug; 19(8):795-9. PubMed ID: 7422088
    [No Abstract]   [Full Text] [Related]  

  • 17. A mobilizable pool of d-amphetamine in adipose after daily administration to rats.
    Sparber SB; Nagasawa S; Burklund KE
    Res Commun Chem Pathol Pharmacol; 1977 Nov; 18(3):423-31. PubMed ID: 928945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of amphetamine potentiation by iprindole.
    Miller KW; Freeman JJ; Dingell JV; Sulser F
    Experientia; 1970 Aug; 26(8):863-4. PubMed ID: 5452016
    [No Abstract]   [Full Text] [Related]  

  • 19. Alterations in the biochemical properties of central dopamine synapses following chronic postnatal PbCO3 exposure.
    Wince LC; Donovan CA; Azzaro AJ
    J Pharmacol Exp Ther; 1980 Sep; 214(3):642-50. PubMed ID: 7400966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous distribution of dextroamphetamine in rat brain after acute amphetamine administration.
    Valenzuela A; Pla A; Villanueva E
    J Toxicol Clin Exp; 1986; 6(6):369-76. PubMed ID: 3820126
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.