These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7113833)

  • 21. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-insoluble high-molecular-weight and alpha-crystallins as the source of the Scheimpflug light scattering pattern in the rat lens.
    Bours J; Ahrend MH; Wegener A; Hockwin O
    Ophthalmic Res; 1990; 22 Suppl 1():90-4. PubMed ID: 2388761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the structural proteins of the human lens.
    Clark R; Zigman S; Lerman S
    Exp Eye Res; 1969 Apr; 8(2):172-82. PubMed ID: 5786867
    [No Abstract]   [Full Text] [Related]  

  • 24. [Carbohydrate associated with gamma crystallins of cattle lens cortex & nucleus (author's transl)].
    Kabasawa I
    Nippon Ganka Gakkai Zasshi; 1982; 86(5):480-3. PubMed ID: 7113836
    [No Abstract]   [Full Text] [Related]  

  • 25. The state of sulfhydryl groups in normal and cataractous human lens proteins. I. Nuclear region.
    Anderson EI; Spector A
    Exp Eye Res; 1978 Apr; 26(4):407-17. PubMed ID: 639888
    [No Abstract]   [Full Text] [Related]  

  • 26. Comparative two-dimensional electrophoretic analysis of water soluble proteins from bovine and murine lenses.
    Garber AT; Gold RJ
    Exp Eye Res; 1982 Dec; 35(6):585-96. PubMed ID: 7151892
    [No Abstract]   [Full Text] [Related]  

  • 27. Comparative investigations on water-soluble crystallins of the embryonic, fetal, and postnatal human lens during development and ageing.
    Trifonova N; Stamenova M; Boulanov I; Goranov M; Bours J
    Ger J Ophthalmol; 1996 Nov; 5(6):454-60. PubMed ID: 9479536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [A structural study of crystallins in the normal and cataractous crystalline lens by x-ray diffraction].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Oftalmol Zh; 1989; (6):365-6. PubMed ID: 2622606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Experimental studies on mechanism of cataract formation. 3. Property of protein located on surface of normal lens fibers (author's transl)].
    Taura T
    Nippon Ganka Gakkai Zasshi; 1980; 84(3):240-6. PubMed ID: 6966887
    [No Abstract]   [Full Text] [Related]  

  • 30. Calcium and high molecular weight protein aggregates in bovine and human lens.
    Spector A; Adams D; Krul K
    Invest Ophthalmol; 1974 Dec; 13(12):982-90. PubMed ID: 4214800
    [No Abstract]   [Full Text] [Related]  

  • 31. Protein distribution and characterization in the prenatal and postnatal human lens.
    Ringens PJ; Hoenders HJ; Bloemendal H
    Exp Eye Res; 1982 May; 34(5):815-23. PubMed ID: 7084342
    [No Abstract]   [Full Text] [Related]  

  • 32. [The ATP content of the normal ageing human lens (author's transl)].
    Nordmann J; Klethi J
    Klin Monbl Augenheilkd; 1978 Oct; 173(4):476-80. PubMed ID: 732161
    [No Abstract]   [Full Text] [Related]  

  • 33. Cataract-related changes in protein aggregates of human lens studied by ultracentrifugation.
    Twardowski J; Hoja D
    Folia Biol (Praha); 1990; 36(6):332-43. PubMed ID: 2279587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related changes in the protein concentration gradient and the crystallin polypeptides of the lens.
    Mostafapour MK; Schwartz CA
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):606-12. PubMed ID: 7076406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High molecular weight protein from human lenses.
    Roy D; Spector A
    Exp Eye Res; 1976 Mar; 22(3):273-9. PubMed ID: 1269548
    [No Abstract]   [Full Text] [Related]  

  • 38. [Sulphydryl groups in human cataractous lens gamma H crystallins].
    Matsuda K; Kabasawa I; Kanehisa T; Watanabe M; Kimura M
    Nippon Ganka Gakkai Zasshi; 1983; 87(10):855-60. PubMed ID: 6673539
    [No Abstract]   [Full Text] [Related]  

  • 39. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dehydroalanine crosslinks in human lens.
    Linetsky M; Hill JM; LeGrand RD; Hu F
    Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.